
2023

Prepare to be Amazed

Repstance User Guide

Version: 5.1.0022

 2

Collabcloud Limited

 47 St Pauls Road, Staines-upon-Thames, Surrey, TW18 3HQ, England

All rights reserved. This product and document are protected by copyright and
distributed under licenses restricting its use, copying, distribution and decompilation.
No part of this product or document may be reproduced in any form by any means
without prior written authorization of Collabcloud Limited and its licensors, if any.

Third-party software, including font technology in this product, is protected by
copyright and licensed from Collabcloud’s Suppliers.

RESTRICTED RIGHTS LEGEND:
Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be
protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS:
The Repstance Name and Logo are trademarks or registered trademarks of Collabcloud
Limited in the United Kingdom and may be protected as trademarks in other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN, THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. COLLABCLOUD LIMITED MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

 3

TABLE OF CONTENTS

1. ABOUT REPSTANCE 6	

1.1 What it is 6	
1.2 How it works 6	

2. GETTING STARTED WITH REPSTANCE 8	
3. INTERACTING WITH A REPSTANCE SERVER 9	

3.1 Command Line Interface (CLI) 9	
3.1.1 Fully Interactive Mode 10	
3.1.2 Command Mode 10	
3.1.3 Configure repcli for Remote Access 11	

3.2 Web User Interface (Web UI) 12	
3.3 REST API 12	

4. SUPPORTED DATABASE REQUIREMENTS 14	
4.1 MS SQL Server Database 14	
4.2 Oracle Database 14	
4.3 MySQL Database 14	
4.4 PostgreSQL Database 14	
4.5 Snowflake Database 15	

5. HOW TO USE REPSTANCE 16	
6. HOW TO REMOVE REPSTANCE 19	

6.1 How to remove Apply Process 19	
6.2 How to remove Capture Process 19	
6.3 Remove Target Database Objects 19	
6.4 Remove Source Database Objects 20	

7. COMMANDS TO BE USED 21	
7.1 Prepare Source and Target Databases 21	

7.1.1 Prepare MS SQL Server Database as Source Database 21	
7.1.2 Prepare Oracle Database as Source Database 22	
7.1.3 Prepare MS SQL Server Database as Target Database 24	
7.1.4 Prepare Oracle Database as Target Database 25	
7.1.5 Prepare PostgreSQL and Aurora PostgreSQL Databases as Target Database 26	
7.1.6 Prepare MySQL and Aurora MySQL Databases as Target Database 28	
7.1.7 Prepare Snowflake as Target Database 29	

7.2 Remove Repstance Database Objects 30	
7.2.1 Remove Repstance Database Objects in MS SQL Server 30	
7.2.2 Remove Repstance Database Objects in Oracle 31	
7.2.3 Remove Repstance Database Objects in PostgreSQL and Aurora PostgreSQL
Databases 33	

 4

7.2.4 Remove Repstance Database Objects in MySQL and Aurora MySQL
Databases 34	
7.2.5 Remove Repstance Database Objects in Snowflake Database 35	

7.3 Validate Source and Target Databases 36	
7.3.1 Validate MS SQL Server Database 36	
7.3.2 Validate Oracle Database 37	
7.3.3 Validate PostgreSQL and Aurora PostgreSQL Databases 38	
7.3.4 Validate MySQL Database and Aurora MySQL Databases 39	
7.3.5 Validate Snowflake Database 40	

7.4 Prepare Capture Process 42	
7.4.1 Prepare Capture Process for MS SQL Server Database 42	
7.4.2 Prepare Capture Process for Oracle Database 44	
7.4.3 Overview of Data Capturing Methods for Oracle Database 47	
7.4.4 Capture Objects Specification 48	
7.4.5 Initial Load 50	
7.4.6 Objects Mapping and Possible Transforms 51	
7.4.7 Transformation Rules and Triggering Order 56	

7.5 Alter Capture Process 57	
7.5.1 Alter Capture Process for MS SQL Server Database 57	
7.5.2 Alter Capture Process for Oracle Database 59	

7.6 Show Capture Process 61	
7.6.1 Show Capture Process for MS SQL Server Database 61	
7.6.2 Show Capture Process for Oracle Database 62	

7.7 Validate Capture Process 64	
7.8 Remove Capture Process 64	
7.9 Prepare Apply Process 66	

7.9.1 Prepare Apply Process for MS SQL Server Database 66	
7.9.2 Prepare Apply Process for Oracle Database 68	
7.9.3 Prepare Apply Process for PostgreSQL and Aurora PostgreSQL Databases 71	
7.9.4 Prepare Apply Process for MySQL and Aurora MySQL Databases 73	
7.9.6 Prepare Apply Process for Snowflake 75	
7.9.7 Objects Filtering 77	

7.10 Alter Apply Process 78	
7.10.1 Alter Apply Process for MS SQL Server Database 78	
7.10.2 Alter Apply Process for Oracle Database 81	
7.10.3 Alter Apply Process for PostgreSQL and Aurora PostgreSQL Databases 83	
7.10.4 Alter Apply Process for MySQL and Aurora MySQL Databases 85	
7.10.5 Alter Apply Process for Snowflake Database 87	

7.11 Show Apply Process 90	

 5

7.12 Validate Apply Process 91	
7.13 Reset Apply Process 92	
7.14 Remove Apply Process 93	
7.15 Control Repstance Processes 94	

7.15.1 Run any Capture or Apply Processes 95	
7.15.2 Stop any Capture or Apply Processes 96	
7.15.3 Status of any Capture or Apply Processes 97	

8. WORK WITH REPSTANCE USING WEB UI 102	
8.1 Connecting to Repstance Web UI 102	
8.2 How to work in Web UI 103	

8.2.1 Database Configuration 103	
8.2.1.2 MS SQL Server Database Configuration 106
8.2.1.3 MySQL Database Configuration 107
8.2.1.4 PostgreSQL Database Configuration 107
8.2.1.5 Redshift Database Configuration 108
8.2.1.6 Snowflake Database Configuration 109

8.2.2 Process Configuration 109	
8.2.2.1 Create Capture Process 110
8.2.2.2 Create Apply Process 114
8.2.2.3 Modify, Delete and Validate Processes 115
8.2.2.4 Processes Monitoring and Maintenance 116

8.2.3 Wizard Mode 117	
9. REPSTANCE SERVER MAINTENANCE 122	

9.1 How to Stop Repstance Services 122	
9.2 How to Start Repstance Services 122	
9.3 How to Check Repstance Service Status 122	
9.4 Backup Repstance Files 122	
9.5 Housekeeping 122	

GLOSSARY 123	

 6

1. ABOUT REPSTANCE

1.1 What it is
Repstance is an entirely new real-time data propagation product for homogeneous and
heterogeneous environments that supports various replication topologies. It is available
in two versions: “Repstance” and “Repstance Advanced Edition”.

“Repstance” supports Oracle, MS SQL Server (with the ability to enable CDC) as a
Source Database and Oracle, MS SQL Server as a Target Database.

“Repstance Advanced Edition” is an extended version of “Repstance”, which in
additional supports PostgreSQL, MySQL, Snowflake, Aurora (PostgreSQL, MySQL) as a
Target Database.

Repstance includes the functionality to support DML and DDL operations, both of
which can be automatically included in the replication stream and if desired uses of
sophisticated transformation abilities. Fast initial data loading and the ability to
synchronize data from any desired timestamp.

Repstance supports Multi-Master replication in all forms of topology with ability the to
ignore data produced by itself (loopback control), thus providing "True" Bi/Multi-
Directional replication, therefore ensuring all instances are equal and continuously
synchronized, any changes made in one node will be propagated (replicated) into the
other nodes.

Flexible third-party product integration (APIs, CLI, custom integration). Ability to
easily configure and monitor replication process using either Web UI or CLI tool.

1.2 How it works
The Repstance Service is delivered via a “Virtual Machine Image”, which is Linux based
instance with preconfigured Repstance software. It is available in the both AWS and
Azure marketplaces. Repstance Server can also be deployed out off the cloud
infrastructure. Please reach out Repstance support at support@repstance.com for the
details.

Repstance has to have access to both Source and Target Databases, in addition it needs a
set of minimal Database Objects to function. This functionality is added during the
“Prepare Database” stage (see chapter 7.1 Prepare Source and Target Databases or 8.2.1
Database Configuration in case of using Web UI).

Repstance uses the running Daemon process to “Multi-task” – that is to say, by using
“threads” within the Daemon it is capable of running Multiple Capture and Apply
Processes concurrently.

 7

Both of the Processes, while they depend on each other to supply or insert the necessary
data they, nonetheless, run as independent threads.

The Capture Process is the means by which the data to be transferred is extracted from
the Source Database. It puts this information into locally stored Trail Files, which the
Apply Processes can use. The data from a single Capture Process can therefore be used
by many Apply Processes and, as a result, this data can therefore be propagated into
multiple Target Databases.

The data extracted by the Capture Process is written to these Trail Files in the same
sequential order as the transactions occurred in the Source Database, which in turn
allows the Apply Process to insert this data into the Target Database in the same order
they were executed in the Source Database. This means that both Source and Target
Databases will be synchronized, that is to say, in a “Consistent State”.

The Capture Process does not need to have a running or configured Apply Process as it
will quite simply continue extracting data using the criteria supplied, conversely the
Apply Process only needs valid Trail Files from a Capture Process to consume.

Both Capture and Apply Processes insert Checkpoints in the form of LSN/SCN – this in
turn means that there is the possibility for Repstance to be restarted from any specified
point in the circumstances where any unexpected event occurs that may lead to data
loss. This provides a robust form of data security and ensures that the data is, again,
always “Consistent”.

The diagram below demonstrates the flow of data from Source to Target Databases.

 8

2. GETTING STARTED WITH REPSTANCE

The Repstance Server is delivered as an AMI paid instance. It is accessible from the
AWS Marketplace, using the “1 Click“ download process here:

https://aws.amazon.com/marketplace/seller-profile?id=90d50a1a-60d0-47ca-898b-
90b953f89b34

For the Azure the Repstance Server is accessible by the following link:

https://azuremarketplace.microsoft.com/en-
us/marketplace/apps?exp=ubp8&search=collabcloud

It requires you as a user to have your own Cloud Account and be subscribed to the
Repstance, and then select the instance of sufficient size and processing power to
manage your database requirements (see vendor recommended instance size).

During the installation process you must ensure that TCP port “22” is opened for
access, as a minimum, and in the case that you want remote access, that port “8797” is
also opened. In order to use Web UI port “3000” should be opened as well.

To connect to the operating system, use SSH protocol. In AWS the only username that
can be used is “ec2-user” along with the key that you were provided with during the
“launch” of the installation process. See the following link for help:

https://docs.aws.amazon.com/en_us/AWSEC2/latest/UserGuide/AccessingInstance
sLinux.html

For the Azure instances the user credentials are used, that were provided during the
instance deployment process.

Once it is installed in your environment, it is ready to run.

 9

3. INTERACTING WITH A REPSTANCE SERVER

There are three possible ways to engage with a running Repstance Server Instance, they
are, either via the Command Line Interface (CLI) or via the Rest API or via Web User
Interface (Web UI).

3.1 Command Line Interface (CLI)
The Repstance Command Line Interface utility (repcli) is the interface with the
Repstance server, and it is used to configure and manage the server as well as providing
a reporting mechanism.

The repcli utility can be invoked directly within this environment, and the user can
start to configure Processes without the need for any further configuration.

Use SSH protocol to connect to the Repstance Server and run the repcli command:

$ repcli
$ repcli>help

Commands:
 alter This command is used to change both the Capture and Apply
process parameters

 clear Clear The Screen

 exit Exit The Program

 help Display Help

etc.

The repcli utility can be configured to communicate with remote Repstance Server
using the HTTPS protocol (see chapter 3.1.3 Configure repcli for Remote Access).

The repcli utility can operate in two modes either “Command Mode” or “Fully
Interactive Mode“. The two different ways of using Repstance have been developed to
provide alternate methods of controlling the product.

If repcli is executed without any parameters it starts functioning in “Fully Interactive
Mode”, by default, which means that it will wait for an input command, until user
issues the “exit” command at which point it returns to the console.

The “Fully Interactive Mode” is useful for a user to construct and/or configure
Repstance, as it provides, at each stage of the process construction, a list of the possible
commands and their applicable parameters, see the “Visuals” below.

“Command mode” is more likely to be used when there is a need to “Embed”
Repstance functions into a deployment Script for Automation processes within the
user’s own environment.

 10

3.1.1 Fully Interactive Mode

This is the utility’s default behavior. As the user starts to provide a command for any
Repstance Process and then “presses” the “Tab” key, repcli utility will supply the user
with the expected possible parameters.

The following example shows the repcli interface displaying the list of all possible
commands:

repcli>
status exit help prepare remove alter reset clear validate
show run stop

This example shows all commands starting with “s”:

repcli>s
status show stop

And the next one shows all the possible parameters for the “alter” command:

repcli>alter process=capture id=1
server= port= user= password= dbname= name= autostart=
debuglevel= ddlinclude= ddlexclude= dmlinclude= dmlexclude= map=

The repcli has built-in help facility, which can be invoked to provide detailed “Help”
for each of the commands, and is shown below:

repcli>alter help

This command is used to change the Capture or Apply process parameters.

The Syntax is:

 alter process=capture|apply id=processID [parameter=value, ...]

Note: The 'id' parameter can not be changed.
The 'name' parameter for a Capture process as well as the 'capturename'

parameter for an Apply process can be changed only in the case that it has
not been provided before - eg. it must be “Unique”.

The process has to exist otherwise the command will fail.

To see available possible parameters, start to use the command.

3.1.2 Command Mode

This is the basic interface format, when used in this mode it will simply supply the
result of the process defined and return to the console prompt:

$repcli status process=capture

Capture Process 1, Name: czdt, DB: zdt, Server: source.repstance.com
 RUN (In Process), Waiting for Transactions
 Last Source DB Change : 2019/02/15 15:47:00.410 UTC (0x000006830000319C0004)
 Last Captured DB Change : 2019/02/15 15:47:00.410 UTC (0x000006830000319C0004)

 11

Total since 2019/02/25 13:30:00.973 UTC (0x00000683000025750004):
 Processing the Transactions : 00:00:58.505
 Waiting for Transactions : 00:45:22.859
 Average Speed (ops) : 4.683
 Transactions: 274 (DDL: 0, Delete: 137, Insert: 137, Update: 0)

Capture Process 2, Name: newcap, DB: mydb, Server: local
 RUN (Failed), Waiting for the Next Command, [lookup local: no such host]
$

3.1.3 Configure repcli for Remote Access

The repcli tool can be used as standalone application to manage remote Repstance
Server through the HTTPS protocol.

The tool can be found in the following directories, once the product is installed:

● /opt/repstance/cli/macos – For MacOS Operating System
● /opt/repstance/cli/win – For Windows
● /opt/repstance/cli/linux – For Linux

Or they can be downloaded from here:

● https://repstance.com/download/cli/macos/repcli.zip
● https://repstance.com/download/cli/win/repcli.zip
● https://repstance.com/download/cli/linux/repcli.zip

These remote clients are only able to connect using the HTTPS protocol and are
supplied with the following default configuration:

● HTTPS port is 8797
● For HTTPS initial use a Self-Signed Certificate is provided
● HTTPS authorisation “Token” in the form of the Repstance AWS Instance ID

In order to use the repcli utility to communicate with the remote Repstance Server it
has to be configured using the repcli command “configure”.

The following example demonstrates the command syntax:

$ repcli configure url=https://hostname:8797/ token=aws-instance-id
verifyhttps=0

Note – The verifyhttps parameter should be set to 0 to avoid the Self-signed
certificate error.

As the product is initially supplied with a Self-Signed Certificate it is highly
recommended that the user replaces this with a security certificate of the required
Security level themselves. The new certificate and key needs to be supplied to the
Repstance Server and the appropriate entries in the
/opt/repstance/conf/repstance.conf file need to be edited to reflect these changes:

 12

● key – path to the key
● crt – path to the certificate

Using this method, the default HTTPS port can also be changed by modifying the port
parameter.

The default token used to access the server can also be changed by modifying the token
parameter in the same file.

If the user wishes to prevent any external access, the port parameter should be set to
value 0.

3.2 Web User Interface (Web UI)
Repstance Instance is delivered with Web UI Server, which allows to configure, manage
and monitor Repstance Processes using a Web browser.

By default, Web UI Server is configured to use HTTPS protocol through the ports
number 3000 and 8797, so these ports must be accessible from the client machine.

The Web UI Server is initially supplied with a Self-Signed Certificate it is highly
recommended that the user replaces this with a security certificate of the required
Security level themselves. The new certificate and key needs to be supplied to the
Repstance Server and the appropriate entries in the
/opt/repstance/conf/repstance.conf file need to be edited to reflect these changes:

● key – path to the key
● crt – path to the certificate

Using this method, the default HTTPS port can also be changed by modifying the port
parameter.

After successful deployment of Repstance instance find its Public DNS. If the Public
DNS is not configured, use the Private IP address.

To enter Repstance Web UI, use your web browser to access to the following address:

https://<Public DNS or Private IP>:3000

Use “repstance” as username. The default password in the AWS environment is the
Instance ID and the VM Id in the Azure cloud. The password can also be found and
changed in the /opt/repstance/conf/repstance.conf file (see “token” section).

3.3 REST API
This is the detailed command structure for communicating with Repstance Services, it
sends an HTTP/HTTPS request in the “JSON Format” to the services and adheres to the
established protocols for the JSON format. List of the available Repstance commands
and their specification is provided in chapter 7. Commands to be used.

 13

The following example demonstrates how to use REST API to call “status” command:

$curl --header "Content-Type: application/json" \
 --request POST \
 --data '{"command": "status"}' http://localhost:8796/control/process

 14

4. SUPPORTED DATABASE REQUIREMENTS

4.1 MS SQL Server Database
Currently the product supports versions of MS SQL Server that permit the use of CDC
(Change Data Capture) as a Source Database with the following limitations:

● A system databases are not supported,
● No Contained databases are supported,
● No databases enabled with In-Memory Optimization (2014/2016 feature) are

currently supported,
● Database Compatibility level must be 100 or higher,
● Asynchronous AlwaysOn databases are not supported,
● The SQL Server Agent must be running.

Any SQL Server databases starting 2008, including RDS and Azure SQL Server
instances, are supported as a Target Database.

The RDS and Azure SQL Server instances are supported for Source and/or Target
Databases.

4.2 Oracle Database
Currently Repstance supports Oracle versions 10g through 19c including RAC
configuration as Source and/or Target Database. Both EC2 and RDS instances are
supported.

The Oracle Source Database must be configured to run in ARCHIVELOG mode prior to
use. It is recommended practice to ensure that the archive logs are not “cleaned-up”
until they are processed by the Repstance Server. At least the “minimal supplemental
logging” needs to be enabled either prior to use or as a part of “prepare database”
command.

4.3 MySQL Database
Currently the product supports MySQL as a Target Database only. The following
versions are supported:

- MySQL versions 5.5-5.7
- MySQL 8.0
- Aurora MySQL
- MariaDB versions 10.0 – 10.3

4.4 PostgreSQL Database
Currently the product supports PostgreSQL as a Target Database only. The following
versions are supported:

 15

- PostgreSQL versions 10.1-11.6
- Aurora PostgreSQL compatible with PostgreSQL 10.x.

4.5 Snowflake Database
Currently the product supports Snowflake as a Target Database only.

 16

5. HOW TO USE REPSTANCE
To replicate data Repstance uses Capture and Apply Processes. The Capture Process
extracts data from the Source Database and puts it into locally stored Trail Files in the
same sequential order as the transactions occurred in the database. The Trial Files are
consumed by Apply Process to insert the captured data into the Target Database. The
Apply Process can also modify data or/and data definition if the appropriable
transformation rules are configured.

Before running the Capture and Apply Processes both Source and Target Databases
need to be prepared by meaning that the minimal set of the Repstance’s objects must be
installed. Repstance has built-in functionality that allows it to prepare databases by
simply running the CLI or REST API command (see chapter 7.1 Prepare Source and
Target Databases) or via Web UI (see chapter 8.2.1 Database Configuration).

Once it is done, we recommend validate both databases by running the “validate”
command (see chapter 7.3 Validate Source and Target Database if using CLI or REST
API, or chapter 8.2.1 Database Configuration for Web UI) to make sure that the
necessary functionality is installed.

The next step is to configure the replication processes.

This is to be done in two parts, the first is to configure the Capture Process, which is
extracting the data from the specified Source Database, and the second is to configure
the corresponding Apply Process, which will insert the “captured” data into the
specified Target Database. The both Processes can be configured either using CLI or
REST API (see chapter 7.4 Prepare Capture Process and 7.9 Prepare Apply Process) or
through the Web UI (see chapter 8.2.2 Processes Configuration).

The data to be replicated will be defined during the Capture Process configuration.
Validation of correctly constructed Capture or Apply Processes can be checked using
the “validate” command. See chapters 7.7 Validate Capture Process, 7.12 Validate
Apply Process or 8.2.2 Process Configuration for the details.

For MS SQL Server the Capture Process will enable CDC on the specified tables only the
first time it is run. If the Capture Process is “altered” at any point, during the next “run”
it will disable CDC on the unwanted tables and initialize CDC on any new tables that
are specified.

The first time Capture Process is run, is the first point and the only point at which data
will start to be captured by this Process.

Assuming that the Capture Process has been properly configured and run, only at this
point it will start to produce Trail Files, which can be used by Apply Process.

In order for an Apply Process to succeed, of necessity the Trail Files of the
corresponding Capture Process must exist.

 17

In order to ensure that an Apply Process will start from the specified LSN/SCN, this
LSN/SCN must exist in the Trail Files and the “reset” command (see chapter 7.13 Reset
Apply Process) can be used to point this Apply Process at the required LSN/SCN. If the
Apply Process has not been reset, it will start processing data from the first available
transaction found in the Trail File.

Once the Apply Process has been configured to use and the proper LSN/SCN (if
needed) has been specified, the Apply Process can be run (see chapter 7.15.1 Run any
Capture or Apply Processes and 8.2.2 Process Configuration).

At the point when both the Capture and Apply Processes are running, the “status”
command (see chapter 7.15.3 Status of any Capture or Apply Process and 8.2.2.4
Processes Monitoring and Maintenance) can be used to monitor them.

In the event it is necessary to ”stop” any currently running processes use the “stop”
command (see chapter 7.15.2 Stop any Capture or Apply Processes and 8.2.2.4 Processes
Monitoring and Maintenance).

The following example demonstrates how to setup simple DML and DDL replications
between two MS SQL Server databases for all objects located in the dbo schema using
repcli tool:

repcli>prepare database=source dbtype=mssql server=source.repstance.com
port=1433 user=ds password=secret dbname=sdemo
[Completed]: Database [source.repstance.com:1433,sdemo] has been prepared

repcli>prepare database=target dbtype=mssql dbtype=mssql
server=target.repstance.com port=1433 user=ds password=secret dbname=tdemo
[Completed]: Database [target.repstance.com:1433,tdemo] has been prepared

repcli>validate database=source dbtype=mssql server=source.repstance.com
port=1433 user=ds password=secret dbname=sdemo
[Valid]: Database SDEMO is valid

repcli>validate database=target dbtype=mssql server=target.repstance.com
port=1433 user=ds password=secret dbname=tdemo
[Valid]: Database TDEMO is valid

repcli>prepare process=capture dbtype=mssql id=1 name=rep1
server=source.repstance.com port=1433 user=ds password=secret dbname=sdemo
dmlinclude=dbo.% ddlinclude=dbo.%
[Completed]: Capture 1 has been added

repcli>validate process=capture id=1
[Valid]: Capture process 1 is valid

repcli>run process=capture id=1
[In Process]: Command [RUN] has been sent. Use [status] command to monitor
the Capture 1 process

repcli>prepare process=apply id=1 dbtype=mssql capturename=rep1
server=target.repstance.com port=1433 user=ds password=secret dbname=tdemo
repuser=1
[Completed]: Apply 1 has been added

 18

repcli>validate process=apply id=1
[Valid]: Apply process 1 is valid

repcli>run process=apply id=1
[In Process]: Command [RUN] has been sent. Use [status] command to monitor
the Apply 1 process

repcli>status
Capture Process 1, Name: rep1, DB: sdemo, Server: source.repstance.com
 RUN (In Process), Waiting for Transactions
 Last Source DB Change : 2019/02/25 21:13:00.173 UTC (0x00000044000002AE0004)
 Last Captured DB Change : 2019/02/25 21:13:00.173 UTC (0x00000044000002AE0004)
 Total since 2019/02/25 21:10:00.983 UTC (0x000000440000020A0004):
 Processing the Transactions : 00:00:05.289
 Waiting for Transactions : 00:02:44.396
 Average Speed (ops) : 1.134
 Transactions: 6 (DDL: 0, Delete: 3, Insert: 3, Update: 0)

Apply Process 1, Transactions Provider (Capture): rep1, DB: tdemo, Server:
target.repstance.com
 RUN (In Process), Waiting for Transactions
 Last Source DB Change : 2019/02/25 21:13:00.173 UTC (0x00000044000002AE0004)
 Last Applied DB Change : 2019/02/25 21:13:00.173 UTC (0x00000044000002AE0004)
 Lag : 00:00:00.000
 Total since 2019/02/25 21:13:00.150 UTC (0x00000000000000000001):
 Processing the Transactions : 00:00:02.065
 Waiting for Transactions : 00:00:08.284
 Average Speed (ops) : 2.905
 Transactions: 6 (DDL: 0, Delete: 3, Insert: 3, Update: 0)

 19

6. HOW TO REMOVE REPSTANCE

The steps involved in removing Repstance are detailed below.

6.1 How to remove Apply Process
To remove an Apply Process use the “remove” command (see chapter 7.14 Remove
Apply Process). The details on how to remove Apply Process through the Web UI are
provided in chapter 8.2.2.3 Modify, Delete and Validate Process.

After using this command, it will remove all information about the Apply Process,
namely configuration files, and the checkpoint details, together with historical
information. If the Target Database is reachable, the “remove” command will clean-up
all the checkpoint information on the Target Database.

As the “remove” command can only accept a single “Apply parameter”, this action can
only be used for one Apply Process at a time.

6.2 How to remove Capture Process
To remove a Capture Process use the “remove” command (see chapter 7.8 Remove
Capture Process). The details on how to remove Capture Process through the Web UI
are provided in chapter 8.2.2.3 Modify, Delete and Validate Processes.

After using this command, it will remove all information about the Capture Process,
namely configuration files, checkpoint details, and the Trail Files. If the Source Database
is MS SQL Server and it is reachable the “remove” command will disable CDC on the
tables that were used by this Capture Process only.

As the “remove” command can only accept a single “Capture parameter”, this action
can only be used for one Capture Process at a time.

Note – If there are still any Apply Processes using Trail Files from this Capture Process,
they will fail.

The steps involved in removing Repstance Server Database Objects are detailed below.

6.3 Remove Target Database Objects
To remove Target Database Objects use the “remove” command (see chapter 7.2
Remove Repstance Database Objects) or Web UI (see chapter 8.2.1 Database
Configuration).

After using this command, it will remove all the Data Objects that were required by the
Apply Process. If there are still Apply Processes inserting data, using these objects they
will immediately fail.

 20

Note – It is strongly recommended that before running this command you run the
“status” command and make a record the LSN/SCN in the “Last Applied DB Change”
section for each Apply Process running on this database, in this way it will be possible
to reverse this action for this database at a later point in time, assuming that the correct
Trail Files still exist and can be accessed.

6.4 Remove Source Database Objects
To remove Source Database Objects use the “remove” command (see chapter 7.2
Remove Repstance Database Objects) or Web UI (see chapter 8.2.1 Database
Configuration).

Note – When using this command it MUST be understood that there will be no way
to “Recover” from its effects.

After using this command, it will remove all the Data Objects that were required by the
Capture Processes. If there are still Capture Processes extracting data, using these
objects they will immediately fail. For MS SQL Server it will disable CDC on this
database. At this point Repstance will no longer be able to record or extract data from
this database.

 21

7. COMMANDS TO BE USED

7.1 Prepare Source and Target Databases
Both Source and Target Databases must be prepared for replication before running any
replication processes. The “prepare” database command is used to configure databases.
The command must be executed on both Source and Target Databases.

7.1.1 Prepare MS SQL Server Database as Source Database

The “prepare” database command is used to configure MS SQL Server database in
order to use it as a Source. It enables CDC and creates the Database Objects necessary
for any Capture Processes.

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","source"],
 ["dbtype","mssql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"],
 ["housekeeping","0|1|2"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

 22

repcli prepare database=source dbtype=mssql \

server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName housekeeping={0|1|2}

The input parameters are:
● database – Database role, the only possible value is source – to insert Capture

Process objects and enable CDC
● dbtype – Type of the Source Database, the acceptable value is mssql – MS SQL

Server database
● server – Host name or IP address of the database server
● port – Database port number
● dbname – Database name to be connected to
● user – Database User name
● password – Database User password
● housekeeping – This parameter determines how the CDC data will be cleaned

up. The possible values are:
➢ 0 – data will be cleaned up by an SQL Server job only,
➢ 1 – install Repstance job to clean up data only after extraction and keep

SQL Server cleanup job, which is a time based CDC setting,
➢ 2 – install Repstance job and remove SQL Server cleanup job, data will be

cleaned up only by the Repstance job.

7.1.2 Prepare Oracle Database as Source Database

The “prepare” database command is used to configure Oracle database in order to use
it as a Source. It enables the necessary level of supplemental logging and creates the
database objects necessary for any Capture Processes.

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

There are two possible connection types – EZCONNECT and TNS. Depending on which
one is chosen, there will be a different set of possible parameters.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","source"],
 ["dbtype","oracle"],

 23

 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"],
 ["createlogdirs","0|1"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare database=source dbtype=oracle \
connectiontype=tns|ezconnect tnsname=tns_alias \
server=databaseHost port=databasePort \
servicename=service_or_SID \
user=username password=password \
dbname=databaseName createlogdirs=0|1

The input parameters are:
● database – Database role, the possible value is source – to insert Capture

Process Objects
● dbtype – Type of RDBMS, the only possible value is oracle
● connectiontype – Specifies the Oracle connection method, the possible values

are:
➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● dbname – Name of either container or pluggable database, valid only if

database=source and for any Oracle versions 12c-19c but excluding RDS
instances

● user – Database User name
● password – Database User password

 24

● createlogdirs – The parameter determines if the “ONLINELOG_DIR” and
“ARCHIVELOG_DIR” Oracle directories need to be created. The possible values
are:

➢ 0 – do not run create the directories (default value),
➢ 1 – create the directories.

Note – The directories are used if the Capture Process is configured to extract changes
in the “DirectLog” mode (see chapter 7.4.2 Prepare Capture Process for Oracle Database
for the details).

7.1.3 Prepare MS SQL Server Database as Target Database

The “prepare” database command is used to configure MS SQL Server database as a
Target. The command must be executed before running Apply Process. It creates the
necessary database objects for any Apply Processes.

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","target"],
 ["dbtype","mssql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

 25

CLI Syntax:

repcli prepare database=target dbtype=mssql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to insert Apply

Process Objects
● dbtype – Type of RDBMS, the only appropriate value is mssql
● server – Host name or IP address of the database server
● port – Database port number
● dbname – Database name to be connected to
● user – Database User name
● password – Database User password

7.1.4 Prepare Oracle Database as Target Database

The “prepare” database command is used to configure Oracle database as a Target. The
command must be executed before running Apply Process. It creates the necessary
database objects for any Apply Processes.

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

There are two possible connection types – EZCONNECT and TNS. Depending on which
one is chosen, there will be a different set of possible parameters.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","target"],
 ["dbtype","oracle"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["user","db_user_name"],
 ["password","db_user_password"],
 ["tablespace","user_tablespace"]

 26

]
}

Server response:

● HTTP Status – status of the command, the possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare database=target dbtype=oracle \
connectiontype=tns|ezconnect tnsname=tns_alias \
server=databaseHost port=databasePort \
servicename=service_or_SID \
user=username password=password \
tablespace=user_tablespace

The input parameters are:
● database – Database role, the only possible value is target – to insert Apply

Process Objects
● dbtype – Type of RDBMS, the only possible value is oracle
● connectiontype – Specifies the Oracle connection method, the possible values

are:
➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● user – Database User name
● password – Database User password
● tablespace – Name of the tablespace that the Repstance’s objects are to be

installed in. The default is the USERS tablespace if no alternative has been
specified.

7.1.5 Prepare PostgreSQL and Aurora PostgreSQL Databases as Target
Database

The “prepare” database command is used to configure PostgreSQL and Aurora
PostgreSQL databases as a Target. The command must be executed before running
Apply Process. It creates the necessary database objects for any Apply Processes.

 27

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","target"],
 ["dbtype","postgresql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare database=target dbtype=postgresql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to insert Apply

Process Objects
● dbtype – Type of RDBMS, the only possible value is postgresql
● server – Host name or IP address of the database server
● port – Database port number
● dbname – Database name to be connected to
● user – Database User name
● password – Database User password

 28

7.1.6 Prepare MySQL and Aurora MySQL Databases as Target Database

The “prepare” database command is used to configure MySQL, MariaDB and Aurora
MySQL databases as a Target. The command must be executed before running Apply
Process. It creates the necessary database objects for any Apply Processes.

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","target"],
 ["dbtype","mysql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare database=target dbtype=mysql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the possible value is target – to insert Apply Process

Objects
● dbtype – Type of RDBMS, the possible value is mysql
● server – Host name or IP address of the database server

 29

● port – Database port number
● dbname – Database name to be connected to
● user – Database User name
● password – Database User password

7.1.7 Prepare Snowflake as Target Database

The “prepare” database command is used to configure Snowflake database as a Target.
The command must be executed before running Apply Process. It creates the necessary
database objects for any Apply Processes.

Note – In order to use the “prepare” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["database","target"],
 ["dbtype","snowflake"],
 ["account","account"],
 ["region","region"],
 ["warehouse","warehouse"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare database=target dbtype=snowflake \
account=account region=region warehouse=warehouse \
user=username password=password \

 30

dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to insert Apply

Process Objects
● dbtype – Type of RDBMS, the correct value is snowflake
● account – Snowflake Account name
● region – Snowflake Region name
● warehouse – Warehouse name
● dbname – Database name to be connected to
● user – Database User name
● password – Database User password

Note – Account name and Region can be easily taken from the Snowflake URL:

7.2 Remove Repstance Database Objects
The “remove” database objects command is used to remove Repstance database
replication objects.

The successful result of using this command will be:

❏ For the Source and Target Database, it will remove the Repstance Database
Objects that were created by the “prepare” command;

❏ For MS SQL Server Database configured as a Source, it will also disable CDC on
the tables used by Repstance.

After successful completion of the command any remaining running Processes will fail.

7.2.1 Remove Repstance Database Objects in MS SQL Server

Note – In order to use the “remove” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:

 31

{
 "command":"remove",
 "parameters":[

 ["database","source|target"],
 ["dbtype","mssql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]

]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli remove database=source|target dbtype=mssql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the possible values are:

➢ source – to remove Capture Process Objects and disable CDC
➢ target – to remove Apply Process Objects

● dbtype – Type of RDBMS, the possible value is mssql
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password

7.2.2 Remove Repstance Database Objects in Oracle

Note – In order to use the “remove” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST

 32

● Header:
➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"remove",
 "parameters":[
 ["database","source|target"],
 ["dbtype","oracle"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]

]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli remove database=source|target dbtype=oracle \
connectiontype=tns|ezconnect tnsname=tns_alias \
server=databaseHost port=databasePort \
servicename=service_or_SID \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the possible values are:

➢ source – to remove Capture Process Objects
➢ target – to remove Apply Process Objects

● dbtype – Type of RDBMS, the only possible value is oracle
● connectiontype – Specifies the method of connection to Oracle, possible values

are:
➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect

 33

● servicename – Database service name or SID, valid only if
connectiontype=ezconnect

● dbname – Name of either container or pluggable database. Valid only if
database=source and for any Oracle versions 12c-19c but excluding RDS
instances

● user – Database User name
● password – Database User password

7.2.3 Remove Repstance Database Objects in PostgreSQL and Aurora
PostgreSQL Databases

Note – In order to use the “remove” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"remove",
 "parameters":[

 ["database","target"],
 ["dbtype","postgresql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]

]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli remove database=target dbtype=postgresql \
server=databaseHost port=databasePort \
user=username password=password \

 34

dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to remove Apply

Process Objects
● dbtype – Type of RDBMS, the possible value is postgresql
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password

7.2.4 Remove Repstance Database Objects in MySQL and Aurora MySQL
Databases

Note – In order to use the “remove” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"remove",
 "parameters":[

 ["database","target"],
 ["dbtype","mysql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]

]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

 35

CLI Syntax:

repcli remove database=target dbtype=mysql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to remove Apply

Process Objects
● dbtype – Type of RDBMS, the possible value is mysql
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password

7.2.5 Remove Repstance Database Objects in Snowflake Database

Note – In order to use the “remove” database command the database user must have
sufficient privileges.

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"remove",
 "parameters":[
 ["database","target"],
 ["dbtype","snowflake"],
 ["account","account"],
 ["region","region"],
 ["warehouse","warehouse"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{

 36

 "Status":"{Completed|Failed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli remove database=target dbtype=snowflake \
account=account region=region warehouse=warehouse \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the possible value is target – to remove Apply

Process Objects
● dbtype – Type of RDBMS, the possible value is snowflake
● account – Snowflake Account name
● region – Snowflake Region name
● warehouse – Warehouse name
● user – Database User name
● password – Database User password
● dbname – Database name

How to find “Snowflake Account” and “Snowflake Region” is described in chapter 7.1.7
Prepare Snowflake as Target Database.

7.3 Validate Source and Target Databases
The “validate” database objects command is used to validate that the correctly
initialized Database Objects exist, and Database is ready for replication.

It is considered to be “Good Practice” to run this command after either the initial
configuration has been completed or if changes have been made to either a Capture or
Apply Process.

7.3.1 Validate MS SQL Server Database

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"validate",
 "parameters":[
 ["database","source|target"],
 ["dbtype","mssql"],
 ["server","host_name"],

 37

 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli validate database=source|target dbtype=mssql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the possible values are:

➢ source – to validate Capture Process Objects
➢ target – to validate Apply Process Objects

● dbtype – Type of RDBMS, the possible value is mssql
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password

7.3.2 Validate Oracle Database

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"validate",
 "parameters":[
 ["database","source|target"],
 ["dbtype","oracle"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],

 38

 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli validate database=source|target dbtype=oracle \
connectiontype=tns|ezconnect tnsname=tns_alias \
server=databaseHost port=databasePort \
servicename=service_or_SID dbname=databaseName \
user=username password=password \

The input parameters are:
● database – Database role, the possible values are:

➢ source – to validate Capture Process Objects
➢ target – to validate Apply Process Objects

● dbtype – Type of RDBMS, the possible value is oracle
● connectiontype – Specifies connection method to Oracle, possible values are:

➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● dbname – Name of either container or pluggable database. Valid only if

database=source and for any Oracle versions 12c-19c but excluding RDS
instances

● user – Database User name
● password – Database User password

7.3.3 Validate PostgreSQL and Aurora PostgreSQL Databases

REST API:

 39

● Endpoint: https://repstance_url/configure/database
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"validate",
 "parameters":[
 ["database","target"],
 ["dbtype","postgresql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli validate database=target dbtype=postgresql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the possible value is target – to validate Apply

Process Objects
● dbtype – Type of RDBMS, the value is postgresql
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password

7.3.4 Validate MySQL Database and Aurora MySQL Databases

REST API:

● Endpoint: https://repstance_url/configure/database

 40

● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"validate",
 "parameters":[
 ["database","target"],
 ["dbtype","mysql"],
 ["server","host_name"],
 ["port","port_number"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli validate database=target dbtype=mysql \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to validate Apply

Process Objects
● dbtype – Type of RDBMS, the value is mysql
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password

7.3.5 Validate Snowflake Database

REST API:

● Endpoint: https://repstance_url/configure/database
● Method: POST

 41

● Header:
➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"validate",
 "parameters":[
 ["database","target"],
 ["dbtype","snowflake"],
 ["account","account"],
 ["region","region"],
 ["warehouse","warehouse"],
 ["dbname","database_name"],
 ["user","db_user_name"],
 ["password","db_user_password"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli validate database=target dbtype=snowflake \
account=account region=region warehouse=warehouse \
user=username password=password \
dbname=databaseName

The input parameters are:
● database – Database role, the only possible value is target – to validate Apply

Process Objects
● dbtype – Type of RDBMS, the value is snowflake
● account – Snowflake Account name
● region – Snowflake Region name
● warehouse – Warehouse name
● user – Database User name
● password – Database User password
● dbname – Database name

How to find “Snowflake Account” and “Snowflake Region” is described in chapter 7.1.7
Prepare Snowflake as Target Database.

 42

7.4 Prepare Capture Process
The “prepare” Capture Process command is used to create new Capture Process.

The “prepare” command does not enable the Database to start capturing data on the
configured objects, until the specified Capture Process runs (see chapters 7.15.1 Run any
Capture or Apply Processes and 8.2.2.4 Processes Monitoring and Maintenance for the
details).

Parameter id is mandatory for "prepare” command. All other parameters are optional.
All parameters except id can be changed using “alter” Capture Process command (see
chapter 7.5 Alter Capture Process and 8.2.2.3 Modify, Delete and Validate Processes).
The name parameter can be altered only in the case if it has not been provided earlier. If
there is another Capture Process, which has the same id or the same name then the
“prepare” command will fail.

7.4.1 Prepare Capture Process for MS SQL Server Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command":"prepare",
 "parameters":[
 ["process","capture"],
 ["id","captureID"],
 ["dbtype","mssql"],
 ["name","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlinclude","objectsMask"],
 ["ddlexclude","objectsMask"],
 ["dmlinclude","objectsMask"],
 ["dmlexclude","objectsMask"],
 ["loadinclude","objectsMask"],
 ["loadexclude","objectsMask"],
 ["map=mapID","mappingClause"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

 43

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=capture id=captureID \
dbtype=mssql name=captureName \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlinclude=objectsMask ddlexclude=objectsMask \
dmlinclude=objectsMask dmlexclude=objectsMask \
loadinclude=objectsMask loadexclude=objectsMask \
map=mapID,mappingClause \
skipapply=skipapplyMask

The input parameters are:
● process – The only appropriate value is capture
● id – The Capture Process id
● dbtype – The appropriate value is mssql
● name – Name of the Capture Process
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Process must be run automatically, the possible

values are:
➢ 0 – do not run the Process automatically (default value)
➢ 1 – to run the Process automatically

● debuglevel – The level of debugging, possible values are 0-15, the default value
is 0

● ddlinclude – Mask of the DDL objects to be captured (see chapter 7.4.4 Capture
Objects Specification for the details)

● ddlexclude – Mask of the DDL objects to be skipped by the Capture Process (see
chapter 7.4.4 Capture Objects Specification for the details)

● dmlinclude – Mask of the DML objects to be captured (see chapter 7.4.4 Capture
Objects Specification for the details)

● dmlexclude – Mask of the DML objects to be skipped by the Capture Process
(see chapter 7.4.4 Capture Objects Specification for the details)

● loadinclude – Mask of the objects to be included into the Initial Load (see
chapter 7.4.5 Initial Load for the details)

 44

● loadexclude – Mask of the objects to be skipped during Initial Load (see chapter
7.4.5 Initial Load for the details)

● map – The set of the parameters to determine objects’ transformation (see chapter
7.4.6 Objects Mapping and Possible Transforms for the details)

● skipapply – Used to define the behavior of a Capture Process when extracting
data, which was produced by Apply Processes as part of the “loop-back” control
function, in that, this Capture Process will extract or ignore the data. The Apply
Processes to be skipped are specified by ids separated by comma. In order to
specify all Processes the “all” value to be used. In order to avoid skipping any
Apply Processes the “none” value to be used. The default value is “all”.

7.4.2 Prepare Capture Process for Oracle Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "prepare",
 "parameters": [
 ["process","capture"],
 ["id","captureID"],
 ["dbtype","oracle"],
 ["name","captureName"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["dbname","databaseName"],
 ["user","username"],
 ["password","password"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlinclude","objectsMask"],
 ["ddlexclude","objectsMask"],
 ["dmlinclude","objectsMask"],
 ["dmlexclude","objectsMask"],
 ["loadinclude","objectsMask"],
 ["loadexclude","objectsMask"],
 ["map=mapID","mappingClause"],
 ["skipapply","skipapplyMask"],
 ["loadconsistent","{0|1}"],
 ["directlogmode","0|1|2"],
 ["asmuser","asm_user"],
 ["asmpassword","asm_password"],
 ["asmservicename","asm_service_or_SID"],
 ["minearchonly","0|1"],
 ["locallogdir","path_to_log_folder"],
 ["poolingdelay","pooling_delay_in_sec"],

 45

 ["preview","0|1"]
]
}

Server response:

● HTTP Status – status of the command, the possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=capture id=captureID \
dbtype=oracle name=captureName \
connectiontype=tns|ezconnect tnsname=tns_alias \
server=databaseHost port=databasePort \
servicename=service_or_SID \
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlinclude=objectsMask ddlexclude=objectsMask \
dmlinclude=objectsMask dmlexclude=objectsMask \
loadinclude=objectsMask loadexclude=objectsMask \
loadconsistent={0|1} map=mapID,mappingClause \
skipapply=skipapplyMask directlogmode={0|1|2} \
asmuser=asm_username asmpassword=asm_password \
asmservicename=asm_service_name \
minearchonly={0|1} locallogdir=path_to_log_directory \
poolingdelay={0-99999} preview={0|1}

The input parameters are:
● process – The only appropriate value is capture
● id – Capture Process id
● dbtype – Type of RDBMS, the only possible value is oracle
● name – Name of the Capture Process
● connectiontype – Specifies the Oracle connection method, the possible values

are:
➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● dbname – Name of either container or pluggable database. Valid only if

database=source and for any Oracle versions 12c-19c but excluding RDS
instances

 46

● user – Database User name
● password – Database User password
● autostart – Determines if the Process must be run automatically, the possible

values are:
➢ 0 – do not run the Process automatically (default value)
➢ 1 – to run the Process automatically

● debuglevel – Level of debugging, possible values are 0-15, default value is 0
● ddlinclude – Mask of the DDL objects to be captured (see the 7.4.4 Capture

Objects Specification chapter for the details)
● ddlexclude – Mask of the DDL objects to be skipped by the Capture Process (see

the 7.4.4 Capture Objects Specification chapter for the details)
● dmlinclude – Mask of the DML objects to be captured (see the 7.4.4 Capture

Objects Specification chapter for the details)
● dmlexclude – Mask of the DML objects to be skipped by the Capture Process

(see the 7.4.4 Capture Objects Specification chapter for the details)
● loadinclude – Mask of the objects to be included into the Initial Load (see

chapter 7.4.5 Initial Load for the details)
● loadexclude – Mask of the objects to be skipped during Initial Load (see chapter

7.4.5 Initial Load for the details)
● loadconsistent – Determines if all the tables included into Initial Load must be

consistent to a single point in time. The possible values are:
➢ 0 – do not export all the tables at the same SCN (default)
➢ 1 – export all the tables at the SCN

● map – The set of the parameters to determine objects’ transformation (see 7.4.6
Objects Mapping and Possible Transforms chapter for the details)

● skipapply – Used to define the behavior of a Capture Process when extracting
data, which was produced by Apply Processes as part of the “loop-back” control
function, in that, this Capture Process will extract or ignore the data. The Apply
Processes to be skipped are specified by ids separated by comma. In order to
specify all Processes the “all” value to be used. In order to avoid skipping any
Apply Processes the “none” value to be used. The default value is “all”.

● directlogmode – Used to define Data Capturing Method (see chapter 7.4.3
Overview of Data Capturing Methods for the details). The possible values are:

➢ 0 – use LogMiner method to capture the data (default)
➢ 1 – use Direct Log Mining method to capture the data. If the

“locallogdir” parameter is in use the Capture Process will process the
Redo Logs from the local directory, otherwise the Capture Process will
read the Logs from the Source Database as Oracle directory objects

➢ 2 – use Direct Log Mining for Redo Logs located on the ASM device
● asmuser – ASM user name
● asmpassword – ASM user password
● asmservicename – ASM service name or SID
● minearchonly – Determines if the Capture Process must process Archived Redo

Logs only. The possible values are:

 47

➢ 0 – process Online and Archived Redo Logs (default)
➢ 1 – process Archived Redo Logs only

● locallogdir – Path to the local directory to process archived logs from (see
chapter 7.4.3 Overview of Data Capturing Methods for the details)

● poolingdelay – The parameter is used to specify number of seconds the
Capture Process will wait after each database changes gathering

● preview – This parameter is used to validate list of the tables to be included into
the replication along with the transformation rules. The possible values are:

➢ 0 – do not use “preview” mode (default)
➢ 1 – do not apply the configuration to the Capture Process but provide the

list of the tables to be included into the replication along with the
transformation rules.

7.4.3 Overview of Data Capturing Methods for Oracle Database

Capture Process can extract Oracle database changes either using “LogMiner”
functionality or by getting them directly from “Redo” or “Archived Redo” logs (Direct
Log Mining).

LogMiner is built-in Oracle method, which is to analyze Redo Logs and extract the
databases changes. LogMiner method can be considered in the following cases:

• Small number of changes (less than 5000 DML operations per second) should be
replicated

• Possible CPU extra load (up to 15% at peak) is acceptable for the Source Database
• The replication of the LOB columns contain data size more than 4000 bytes is not

required
• Size of the changes to be extracted is less than 5% of the Redo log size
• Clustered tables need to be replicated
• Access to Redo/Archived Logs is not possible to configure

In Direct Log Mining mode the Capture Process retrieves Redo Logs and use them to
extract the database changes.

Direct Log Mining method best fits for most databases and used to meet the following
replications requirements:

• High replication speed
• Minimal impact on the Source Database
• Support LOB columns
• Replication of Clustered Tables is not required
• Replication of Partitioned Index-Organized Tables is not required

Capture Process configuration varies depending on the Redo Log location. It supports
Redo Logs located as either on file system or ASM device. Capture Process can also be
configured to extract the changes from Redo Log files, which are available in the
Repstance instance.

 48

File System Location
For the Redo Logs located on the file system the “ONLINELOG_DIR” and
“ARCHIVELOG_DIR” directories should be created (see chapter 7.1.2 Prepare Oracle
Database as Source Database for the details). The “directlogmode” parameter of the
Capture Process should be set to “1”.

ASM Device
Capture Process requires ASM connection to be configured to access Redo Logs. The
following parameters should be provided:

• asmuser
• asmpassword
• asmservicename

The “directlogmode” parameter should be set to “2”.

Note – The ASM User has to have “sysdba” role assigned.

Repstance Local File System
Capture Process can be configured to extract the changes from Redo Logs delivered into
Repstance instance by any external process. This configuration may be used to reduce
load to the Oracle Net Services or if the access to Redo Logs through the Oracle Instance
is hard to implement. In order to configure the “locallogdir” parameter should be
provided and the “directlogmode” parameter should be set to “1”.

7.4.4 Capture Objects Specification

Repstance allows flexibility to determine a set of tables, which are to be captured. The
tables for DML and DDL operations are specified by the different parameters.

The following parameters are used for DML replication:

● dmlinclude – list of the tables to be included into the DML replication
● dmlexclude – list of the tables to be excluded from the DML replication

The following parameters are used for DDL replication:

● ddlinclude – list of the tables to be included into the DDL replication
● ddlexclude – list of the tables to be excluded from the DDL replication

Note – These criteria are mutually exclusive. The table will only be replicated in the
case that the name matches the “include” criteria and does not match the “exclude”
criteria.

The table is specified in schema_name.table_name format. In order to specify the list of
the tables, each table must be separated by comma. The “%” symbol may be used in

 49

order to match any number of characters. It may also be used in both schema_name and
table_name parts.

The following examples show various ways of defining tables:

❏ Customers and employees tables, which are in the dbo schema:

 dbo.customers,dbo.employees

❏ Any tables in the dbo schema:

 dbo.%

❏ Any tables having name started from rep or tmp:

 %.rep%,%.tmp%

❏ Any table in report schema ends with #:

 report.%#

The following examples show how to use the DML/DDL parameters:

❏ To capture DML changes for all tables in dbo schema except where tables start
with rep:

 dmlinclude=dbo.%
 dmlexclude=dbo.rep%

❏ To capture DML changes for all tables in the cap1, cap2 and cap3 schemas except
the report1 table from the cap1 schema:

 dmlinclude=cap1.%,cap2.%,cap3.%
 dmlexclude=cap1.report1

❏ To capture DML and DDL operations for any tables in the dbo schema:

 dmlinclude=dbo.%
 ddlinclude=dbo.%

❏ To capture only DDL operations for objects in the report schema:

 ddlinclude=report.%

These parameters influence the newly created tables as well. The description below
shows the capture behavior of the tables created:

Tables that
match DML

criteria

Tables that
match DDL

criteria
Capture Behavior

true

true

This create statement is captured. Any further DML
statements will be captured as well

true false
This create statement is not captured. No DML statements

will be captured

 50

false

true

This create statement is captured. DML statements are not
captured. However, any further DDL statements are

captured

false false
This create statement is not captured. Neither DML or DDL

statements will be captured

7.4.5 Initial Load

Repstance has built-in functionality to load objects’ data and start the replication
process from the timestamp at which the data has been created. Initial Loading is
performing by the Capture Process at the “Run” stage (see chapter 7.15.1 Run any
Capture or Apply Processes for the details).

This functionality is used when it is necessary to synchronize data between the Source
and Target Databases before starting the replication process. The Initial Load
parameters can be configured to either clean up or preserve data in the Target Database
before loading from the Source Database. Two further options are to create table in the
Target Database if it doesn’t exist and recreate this table in the Target Database if it does
exist.

The following parameters are used to configure the objects for Initial Loading:

● loadinclude – list of the tables to be included into the Initial Load
● loadexclude – list of the tables to be excluded from the Initial Load

Note – These parameters MUST be used in conjunction with the dmlinclude/
dmlexclude object definitions as well, otherwise the Capture Process will skip them.

The format to be specified takes the following form:

schema_name1.table_name1:[loadOption1],
schema_name2.table_name2:[loadOption2], ...

In order to define the list of the tables to be part of this process, and where there are
more than one tables mask to be defined each of these must be separated by comma.
The % symbol may be used in order to match any number of characters. It may also be
used in both schema_name and table_name parts.

The loadOption is an optional parameter, and it used to perform the action detailed
below on the data before insertion into the Target Database, and can have the following
values:

● A – preserve the data which is the DEFAULT value
● T – use truncate statement to clean up the data
● D – use delete statement to clean up the data
● C – create table if it doesn’t exist
● R – recreate table if it already exists

 51

Note – Once the Initial Load has been completed by Capture Process the values of
loadinclude and loadexclude parameters will be removed automatically. The
details of Initial Load criteria can be found in the Capture log files.

The following examples show various ways of defining the Initial Loading parameters:

❏ To reload data for the emp and emp_audit_trail tables, which are in the dbo
schema and truncate these tables before insertion:

 loadinclude=dbo.emp:T,dbo.emp_audit_trail:T

❏ Any data from tables starting with the rep_ prefix in the dbo schema which need

to be deleted before insertion:

 loadinclude=dbo.rep_%:D

❏ To reload all tables started with emp prefix except the employee_archive tables:

 loadinclude=dbo.emp%:T
 loadexclude=dbo.employee_archive

❏ To reload customer table and create it if it doesn’t exist in the Target Database:

 loadinclude=dbo.customer:C

7.4.6 Objects Mapping and Possible Transforms

Transforms are primarily used where there is a need to reformat any statements. The
transformation can only be configured for a Capture Process, as the Apply function is
inherent in the use of transformation. Therefore, it is not possible nor is it necessary to
construct an Apply Process for a Transform.

Repstance supports transformation rules, which can be applied to the following objects:

❏ schema name
❏ table name
❏ column name
❏ “identity” attribute (valid only for SQL Server DB)
❏ “primary key” attribute
❏ data type
❏ data type length
❏ data

Transformation rules can be triggered based on:

❏ schema name mask
❏ table name mask
❏ column name mask
❏ “identity” attribute (valid only for SQL Server DB)
❏ reference “identity” column (valid only for SQL Server DB)

 52

❏ “primary key” attribute
❏ data type mask
❏ data type length

Transformation rules can be used to exclude the following objects:

❏ table
❏ column
❏ “identity” attribute (valid only for SQL Server DB)
❏ reference “identity” column (valid only for SQL Server DB)
❏ “primary key” attribute

Transformation rules can be used to add the following objects:

❏ column
❏ “identity” attribute (valid only for SQL Server DB)
❏ “primary key” attribute

Transformation rules can be used to change the following objects:

❏ schema name
❏ table name
❏ column name
❏ “identity” attribute (valid only for SQL Server DB)
❏ “primary key” attribute
❏ data type
❏ data type length
❏ data

Note – Data can be changed to the :

❏ constant value
❏ original value of another column from this table
❏ result of SQL Server function execution. The original values of any columns from

this table can be passed to the Function as parameters. The Function must exist
in the Target Database, where the Apply Process is to be run.

There are normally three separate parts that comprise a Transformation. They are:

❏ id – the id, which is unique to each Transform has the purpose of determining
the order in which the Transform is executed by the Process

❏ rule – specifies the object to be transformed and specifies how it is to be
transformed

❏ description – a meaningful description of this Transformation

The syntax used is:

map=id,rule=(CaptureCriteria:TransformCriteria),description="desc"

where:

CaptureCriteria=schema_mask.table_mask.column_mask.[attr_spec]

 53

attr_spec=PK=PK;TYPE=type;ID=id;LEN=len

The CaptureCriteria consists of:

● schema_mask – the mask is used to specify schema name
● table_mask – the mask is used to specify table name
● column_mask – the mask is used to specify column name

The attr_spec is:

● PK – the specification of PK attribute, it can accept the following values:

➢ N – to determine column without PK
➢ U – to include PK column

● ID – determine if the column should or should not be handled as an
“identity_insert”, the possible values are:

➢ 0 – to process as “non identity_insert” column
➢ 1 – to process as “identity_insert” column
➢ 2 – to process as reference “identity” column

● TYPE – name of the data type
● LEN – length of data type if applicable

TransformCriteria=schema_mask.table_mask.column_mask.[attr_spec]

attr_spec=PK=PK;TYPE=type;ID=id;LEN=len;DATA="data_specification"

data_specification=DATA="SQL_function_or_operation"

The TransformCriteria consists of:

● schema_mask – the mask is used to specify schema name
● table_mask – the mask is used to specify table name
● column_mask – the mask is used to specify column name

The attr_spec is:

● PK – the specification of PK attribute, it can accept the following values:

➢ N – to determine column without PK
➢ U – to include PK column

● ID – determine if the column should or should not be handled as an
“identity_insert”, the possible values are:

➢ 0 – to process as “non identity_insert” column
➢ 1 – to process as “identity_insert” column
➢ 2 – to process as reference “identity” column

● TYPE – name of the data type
● LEN – length of data type if applicable
● DATA – this is the data that will result from the transformation specified on the

captured data. This can be:
➢ predefined value in format "predefined_value"
➢ any operations based on the values of this column. In order to use the

values found in the column the % needs to be used

 54

➢ any operations based on the values of any columns in this table. In order
to use the values of any column the following format is used
"C:number_of_column". Table name can be passed as parameter as well.
The format is "T:0".

To exclude columns the following syntax is used:

schema_mask.table_mask.NULL

where:
● schema_mask – the mask is used to specify schema name
● table_mask – the mask is used to specify table name

To include any columns that were not represented in the source table the following
syntax is used:

schema_mask.table_mask.column_name.[TYPE=type;LEN=len;
PK=pk;ID=id;DATA=”data_specification”]

where:
● schema_mask – the mask is used to specify schema name
● table_mask – the mask is used to specify table name
● column_name – column name (this must be included and can not use the %

symbol)
● TYPE – data type definition of the column to be created (this must be included

and can not use the % symbol)
● LEN – length of data type, where necessary must be specified here
● PK – the specification of PK attribute. It accepts the following values:

➢ N – to determine column without PK
➢ U – to include PK column

● ID – determine if the column should or should not be handled as an
“identity_insert”. The possible values are:

➢ 0 – to process as “non identity_insert” column
➢ 1 – to process as “identity_insert” column

● DATA – this is the data that will result from the transformation specified on the
captured data. This can be:

➢ predefined value in format "predefined_value"
➢ any operations based on the values of this column. In order to use the

values found in the column the % needs to be used
➢ any operations based on the values of any columns in this table. In order

to use the values of any column the following format is used
"C:number_of_column". Table name can be passed as parameter as well.
The format is "T:0".

The following examples show how to use the Transformation Rules:

❏ For all tables located in the dbo schema change the schema name to report:

map=1,rule=(dbo.%:report.%),description="sample 1"

 55

❏ Rename dbo.emp table to report.employees table:

map=2,rule=(dbo.emp:report.employees),description="sample 2"

❏ Exclude info column in the dbo.customer table from the replication:

map=3,rule=(dbo.customer.info:dbo.customer.NULL),description="sample 3"

❏ For any tables in the dbo schema having name starting with rep_ replace the prefix
to the report_:

map=4,rule=(dbo.rep_%:dbo.report_%),description="sample 4"

❏ For all tables in the dbo schema having ident column change the column name to
id:

map=5,rule=(dbo.%.ident:dbo.%.id),description="sample 5"

❏ Exclude from the replication any columns having name id and defined as primary
key:

map=6,rule=(dbo.%.id.[PK=U]:dbo.%.id.NULL),description="sample 6"

❏ For any tables having column id of int type handle this column as primary key.
Any update and delete statements will be built to use id column as primary key or the
part of composite primary key:

map=7,rule=(dbo.%.id.[TYPE=int]:dbo.%.id.[PK=P]),description="sample 7"

❏ Put the value of the desc column in the branch table into the uppercase:

map=8,rule=(dbo.branch.desc:dbo.branch.desc.[DATA=\"upper(%)\"])

❏ Add new column named tag of the nvarchar(100) type into the customer table
contains predefined value rep:

map=9,rule=(dbo.customer.NULL:dbo.customer.tag.[TYPE=nvarchar;
LEN=100;DATA=\"'rep'\"])

❏ Add new column named name of the nvarchar(255) type to the person table
contains concatenation of the firstname and lastname columns (in the table firstname
has the position 2 and lastname has the position 3):

map=10,rule=(dbo.person.NULL:dbo.person.name.[TYPE=nvarchar;
LEN=255;DATA=\"C:2+C:3\"])

❏ For any tables in the dbo schema having name starting with rep_ and column id,
which is defined as primary key and identity_insert, rename the table into the report
schema and without rep_ prefix and use custom function report.generateID to
reproduce the value of this column. This column will still be used as a primary key, but
not as identity_insert:

map=11,rule=(dbo.rep_%.id.[PK=U;ID=1]:report.%.id.[PK=U;ID=0;
DATA=\"report.generateID()\"])

 56

7.4.7 Transformation Rules and Triggering Order

It is imperative that you understand that the order in which the rules are applied can
significantly impact on the expected results. The following logic is used to handle rule
order processing. The specified Capture Process will go and look for any possible data
that meets the first of the configured rules, to apply. In the case where there is more
than one rule to be processed, the rule which will “take precedence“ will be the rule
which best fulfills the data found. If the objects found match the criteria given in the
first rule to be processed any subsequent rules will be ignored because the previous
criteria have been met.

The logic used in transformation does not necessarily follow the rules for human logic,
in that, the least significant amount of data to be processed should be the first rule, and
the rule which affects the largest amount of data should be the last rule. In this way the
user will be able to apply the requirements of the transform in the desired way.

The following example demonstrates this program logic. Assume that you need to
rename all tables in the dbo schema having a name starting with emp into the schema
hr and keep the original table name. Another requirement is to rename the ident
columns to be the id for any tables in the dbo schema, in the case where we have an
employee table that contains the ident column, this matches both rules. The examples
demonstrate the replication behavior depending on the order that the rules are
presented:

❏ In this case you can’t expect the ident column to be renamed into id column
together with renaming dbo schema in hr schema. The dbo schema for employee table
will be changed to hr schema but the ident column will not be changed:

map=1,rule=(dbo.emp%:hr.emp%),description="sample 1"
map=2,rule=(dbo.%.ident:dbo.%.id),description="sample 2"

❏ In this case the dbo schema will not be changed into the hr schema with renaming
the ident column to the id column. The dbo schema for employee table will not be
changed but the ident column will be changed to id:

map=1,rule=(dbo.%.ident:dbo.%.id),description="sample 3"
map=2,rule=(dbo.emp%:hr.emp%),description="sample 4"

❏ In this case the dbo schema for employee table will be changed and the ident
column will be changed to id:

map=1,rule=(dbo.emp%.ident:hr.emp%.id)
map=2,rule=(dbo.emp%:hr.emp%)
map=3,rule=(dbo.%.ident:dbo.%.id)

 57

7.5 Alter Capture Process
The “alter” Capture Process command is used to change the Capture Process
parameters. The id parameter can not be changed. The name parameter can be changed
only in the case that it has not been provided before – eg. it must be "Unique".

The Capture Process has to exist otherwise the command will fail.

Note – You can alter the Capture Process even if it is running, however these changes
will only be implemented after the Capture Process has been stopped and rerun.

7.5.1 Alter Capture Process for MS SQL Server Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","capture"],
 ["id","captureID"],
 ["dbtype","mssql"],
 ["name","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlinclude","objectsMask"],
 ["ddlexclude","objectsMask"],
 ["dmlinclude","objectsMask"],
 ["dmlexclude","objectsMask"],
 ["loadinclude","objectsMask"],
 ["loadexclude","objectsMask"],
 ["map=mapID","mappingClause"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{

 58

 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=capture id=captureID dbtype=mssql \
name=captureName server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlinclude=objectsMask ddlexclude=objectsMask \
dmlinclude=objectsMask dmlexclude=objectsMask \
loadinclude=objectsMask loadexclude=objectsMask \
map=mapID,mappingClause skipapply=skipapplyMask

The input parameters are:
● process – Process type, the only appropriate value is capture
● id – Capture Process identifier
● dbtype – Type of RDBMS, the possible value is mssql
● name – Name of the Capture Process
● server – Host name or IP address of the database server
● port – Database port number
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Capture Process must be run automatically.

Possible values are:
➢ 0 – do not run the Capture Process automatically (default value)
➢ 1 – to run the Capture Process automatically

● debuglevel – Level of debugging, possible values are: 0-15
● ddlinclude – Mask of the DDL objects to be captured (see chapter 7.4.4 Capture

Objects Specification for the details)
● ddlexclude – Mask of the DDL objects to be skipped by the Capture Process (see

chapter 7.4.4 Capture Objects Specification for the details)
● dmlinclude – Mask of the DML objects to be captured (see chapter 7.4.4 Capture

Objects Specification for the details)
● dmlexclude – Mask of the DML objects to be skipped by the Capture Process

(see chapter 7.4.4 Capture Objects Specification for the details)
● loadinclude – Mask of the objects to be included into the Initial Load (see

chapter 7.4.5 Initial Load for the details)
● loadexclude – Mask of the objects to be skipped during Initial Load (see chapter

7.4.5 Initial Load for the details)
● map – The set of the parameters to determine objects’ transformation (see chapter

7.4.6 Objects Mapping and Possible Transforms for the details)
● skipapply – Used to define the behavior of a Capture Process when extracting

data, which was produced by Apply Processes as part of the “loop-back” control
function, in that, this Capture Process will extract or ignore the data. The Apply
Processes to be skipped are specified by ids separated by comma. In order to

 59

specify all Processes the “all” value to be used. In order to avoid skipping any
Apply Processes the “none” value to be used. The default value is “all”.

7.5.2 Alter Capture Process for Oracle Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","capture"],
 ["id","captureID"],
 ["dbtype","oracle"],
 ["name","captureName"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlinclude","objectsMask"],
 ["ddlexclude","objectsMask"],
 ["dmlinclude","objectsMask"],
 ["dmlexclude","objectsMask"],
 ["loadinclude","objectsMask"],
 ["loadexclude","objectsMask"],
 ["map=mapID","mappingClause"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=capture id=captureID \
dbtype=oracle name=captureName \

 60

connectiontype=tns|ezconnect \
tnsname=tns_alias \
server=databaseHost port=databasePort \
servicename=service_or_SID
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlinclude=objectsMask ddlexclude=objectsMask \
dmlinclude=objectsMask dmlexclude=objectsMask \
loadinclude=objectsMask loadexclude=objectsMask \
map=mapID,mappingClause skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is capture
● id – Capture Process id
● dbtype – Type of RDBMS, the possible value is oracle
● connectiontype – Specifies the Oracle connection method, possible values are:

➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● dbname – Name of either container or pluggable database. Valid only if

database=source and for any Oracle versions 12c-19c but excluding RDS
instances

● name – Name of the Capture Process
● user – Database User name
● password – Database User password
● autostart – Determines if the Capture Process must be run automatically,

possible values are:
➢ 0 – do not run the Capture Process automatically (default value)
➢ 1 – to run the Capture Process automatically

● debuglevel – The level of debugging, possible values are 0-15
● ddlinclude – Mask of the DDL objects to be captured (see 7.4.4 Capture Objects

Specification chapter for the details)
● ddlexclude – Mask of the DDL objects to be skipped by the Capture Process (see

7.4.4 Capture Objects Specification chapter for the details)
● dmlinclude – Mask of the DML objects to be captured (see 7.4.4 Capture Objects

Specification chapter for the details)
● dmlexclude – Mask of the DML objects to be skipped by the Capture Process

(see 7.4.4 Capture Objects Specification chapter for the details)
● loadinclude – Mask of the objects to be included into the Initial Load (see

chapter 7.4.5 Initial Load for the details)
● loadexclude – Mask of the objects to be skipped during Initial Load (see chapter

7.4.5 Initial Load for the details)

 61

● map – The set of the parameters to determine objects’ transformation (see chapter
7.4.6 Objects Mapping and Possible Transforms for the details)

● skipapply – Used to define the behavior of a Capture Process when extracting
data, which was produced by Apply Processes as part of the “loop-back” control
function, in that, this Capture Process will extract or ignore the data. The Apply
Processes to be skipped are specified by ids separated by comma. In order to
specify all Processes the “all” value to be used. In order to avoid skipping any
Apply Processes the “none” value to be used. The default value is “all”.

7.6 Show Capture Process
The “show” Capture command is used to show a Capture Process configuration. This
command will show the latest ”Set” of configured processes, regardless of whether or
not the Capture Process has been “stopped and re-applied”, this will not necessarily be
the configuration of the currently running Capture Process.

Note – If the configuration has been changed when the Capture Process is running, the
“show” command will still display the currently configured process, not the “running”
one.

7.6.1 Show Capture Process for MS SQL Server Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "show",
 "parameters": [
 ["process","capture"],
 ["id","captureID"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details",
 "parameters":[
 ["dbtype","mssql"],
 ["name","captureName"],

 62

 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlinclude","objectsMask"],
 ["ddlexclude","objectsMask"],
 ["loadinclude","objectsMask"],
 ["loadexclude","objectsMask"],
 ["dmlinclude","objectsMask"],
 ["dmlexclude","objectsMask"],
 ["map=mapID","mappingClause"],
 ["skipapply","skipapplyMask"]
]
}

CLI Syntax:

repcli show process=capture id=captureID

The input parameters are:
● process – The only possible value is capture
● id – The Capture Process identifier

Note – Only if the command completes successfully will the response contain all the
“parameter” values and at the same time this information will be displayed in Plain
Text in the “Message” display.

7.6.2 Show Capture Process for Oracle Database

Note – If the configuration has been changed when the Capture Process is running, the
“show” command will still display the currently configured process, not the “running”
one.

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "show",
 "parameters": [
 ["process","capture"],
 ["id","captureID"]
]
}

Server response:

 63

● HTTP Status – status of the command, possible codes are:
➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details",
 "parameters":[
 ["id","captureID"],
 ["dbtype","oracle"],
 ["name","captureName"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlinclude","objectsMask"],
 ["ddlexclude","objectsMask"],
 ["dmlinclude","objectsMask"],
 ["dmlexclude","objectsMask"],
 ["loadinclude","objectsMask"],
 ["loadexclude","objectsMask"],
 ["map=mapID","mappingClause"],
 ["skipapply","skipapplyMask"],
 ["loadconsistent","{0|1}"],
 ["directlogmode","0|1|2"],
 ["asmuser","asm_user"],
 ["asmpassword","asm_password"],
 ["asmservicename","asm_service_or_SID"],
 ["minearchonly","0|1"],
 ["locallogdir","path_to_log_folder"],
 ["poolingdelay","pooling_delay_in_sec"],
 ["preview","0|1"]
]
}

CLI Syntax:

repcli show process=capture id=captureID

The input parameters are:
● process – The only possible value is capture
● id – The Capture Process identifier

Note – Only if the command completes successfully will the response contain all the
“parameter” values and at the same time this information will be displayed in Plain
Text in the “Message” display.

 64

7.7 Validate Capture Process
The “validate” Capture Process command is used to perform a set background checks
to ensure that all the necessary parameters have been supplied to enable the
functionality of a Capture configuration.

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "validate",
 "parameters": [
 ["process","capture"],
 ["id","captureID"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details",
}

CLI Syntax:

repcli validate process=capture id=captureID

The input parameters are:
● process – The only possible value is capture
● id – The Capture Process identifier

In case the Status is Invalid the Message will contain detailed information about the
validation error.

7.8 Remove Capture Process
The “remove” Capture Process command is used to remove all of the Capture Process
configuration files, Trail Files and the checkpoint information.

For MS SQL Server Database if the Source Database is reachable the “remove”
command will disable CDC on the tables, which are configured to be captured by this
Process only.

 65

The command can only be executed if the specified Capture Process is not running.

It is strongly recommended that you backup all Trail and configuration files before
running this command (see chapter 9.4 Backup Repstance Files).

Note – After removing the Capture Process it is not possible to reverse this action.

Any Apply Processes using data from this Capture will cease to work.

This command cannot be applied to a group of “Configures” at the same time, it must
be used individually for each of the configured Capture Processes.

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "remove",
 "parameters": [

 ["process","capture"],
 ["id","captureID"]

]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Error|Warning}",
 "Message":"The command execution details",
}

CLI Syntax:

repcli remove process=capture id=captureID

The input parameters are:
● process – The only possible value is capture
● id – The identifier of the Capture Process

The output parameters are:
● Status – Status of the command, possible values are:

➢ Error – the command has failed to run
➢ Warning – the process has failed to remove all the Capture objects

 66

➢ Completed – the command has completed successfully
● Message – The details of command execution

The following example demonstrates how to remove Capture 2:

repcli remove process=capture id=2

7.9 Prepare Apply Process
The “prepare” Apply command is used to add a new Apply Process. The “prepare”
command can not be used to validate the database connection, and availability of the
Trail Files or the presence of the necessary database objects to be used by the Apply
Process.

In order to validate that the Apply Process is configured properly and it is able to run
on the Target Database, the “validate” command must be used (see chapter 7.12.
Validate Apply Process).

The “prepare” command does not enable the Apply Process to write data into the
Target Database until the specified Apply Process is run (see chapter 7.15.1 Run any
Capture or Apply Processes).

Parameter id is mandatory. All other parameters are optional. All parameters except id
can be changed using “alter” Apply Process command (see chapter 7.10 Alter Apply
Process for the details).

7.9.1 Prepare Apply Process for MS SQL Server Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "prepare",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","mssql"],
 ["capturename","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["repuser","0|1"],
 ["ddlcreate","objectMask:options"],

 67

 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=apply id=applyID dbtype=mssql \
capturename=captureName \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} \
debuglevel={0-15} repuser={0|1} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process id
● dbtype – Type of RDBMS, the only possible value is mssql
● capturename – The name of the Capture Process which is providing the data to

be used
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – The level of debugging. Possible values are 0-15
● repuser – Determines if the Apply Process must represent itself as SQL Server

replication process. The possible values are:
➢ 0 – do not represent itself as SQL Server replication process (default value)
➢ 1 – to represent itself as SQL Server replication process

 68

● ddlcreate – Used to define the Apply Process behavior when creating a table, if
a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – to drop the existing table and recreate it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following option:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

You should be aware that if the repuser parameter is set to “1” and is invoked, then
when delivering data to a SQL Server Target Database, any changes of objects marked
as ‘Not for Replication’ (Identity columns, table triggers, foreign keys and check
constraints) will be handled in exactly the same way, as they would be produced by an
SQL Server replication agent. As an example, any triggers which are created with the
“Not for Replication” option will never be fired.

7.9.2 Prepare Apply Process for Oracle Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{

 69

 "command": "prepare",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","oracle"],
 ["capturename","captureName"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["user","username"],
 ["password","password"],
 ["autostart","{0|1}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["debuglevel","{0-15}"],
 ["skipapply","skipapplyMask"],
 ["ldtxsize","{0-9999999999}"],
 ["batchmode","{0|1}"],
 ["filter","filterID,filteringClause"],
 ["transformload","{0|1}"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=apply id=applyID dbtype=oracle \
capturename=captureName \
connectiontype="tns|ezconnect" tnsname=tns_alias \
server=databaseHost port=databasePort \
user=username password=password \
servicename=service_or_SID autostart={0|1} \
ddlcreate=objectMask:options ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
debuglevel={0-15} skipapply=skipapplyMask \
ldtxsize={0-9999999999} batchmode={0|1} \
filter=filterID,filteringClause transformload={0|1}

The input parameters are:
● process – The only appropriate value is apply
● id – The Apply Process id
● dbtype – Type of RDBMS, the only possible value is oracle

 70

● connectiontype – Specifies the Oracle connection method, the possible values
are:

➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, alid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● capturename – The name of the Capture Process which is providing the data to

be used
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically. The

possible values are:
➢ 0 – do not run the Apply Process automatically
➢ 1 – to run the Apply Process automatically

● ddlcreate – Used to define the Apply Process behavior when creating a table, if
a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● debuglevel – The level of debugging, possible values are 0-15
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

 71

● ldtxsize – Determines the number of records to be inserted in one transaction
at the Initial Load stage. If the value is 0 (default) the table is loaded in a single
transaction.

● batchmode – This parameter is to specify transaction processing method. If the
parameter is enabled the Apply Process combines and processes set of
transactions in a single transaction. The possible values are:

➢ 0 – do not apply transactions in batch mode (default)
➢ 1 – apply transactions in batch mode

● filter – The set of the parameters to determine objects’ filtering (see chapter
7.9.7 Objects Filtering for the details).

● transformload – Determines if the transformation rules must be applied to the
Initial Load. The possible values are:

➢ 0 – do not use transformation rules for the Initial Load (default)
➢ 1 – use transformation rules for the Initial Load.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.9.3 Prepare Apply Process for PostgreSQL and Aurora PostgreSQL Databases

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "prepare",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","postgresql"],
 ["capturename","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

 72

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=apply id=applyID dbtype=postresql \
capturename=captureName \
server=databaseHost port=databasePort \
user=username password=password dbname=databaseName \
autostart={0|1} debuglevel={0-15} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process id
● dbtype – Type of RDBMS, the only possible value is postgresql
● capturename – The name of the Capture Process which is providing the data to

be used
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically,

possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – Level of debugging, possible values are 0-15
● ddlcreate – Used to define the Apply Process behavior when creating a table, if

a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each

 73

table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.9.4 Prepare Apply Process for MySQL and Aurora MySQL Databases

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "prepare",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","mysql"],
 ["capturename","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

 74

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=apply id=applyID dbtype=mysql \
capturename=captureName \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the only possible value is mysql
● capturename – The name of the Capture Process which is providing the data to

be used
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – Level of debugging, possible values are 0-15
● ddlcreate – Used to define the Apply Process behavior when creating a table, if

a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each

 75

table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.9.6 Prepare Apply Process for Snowflake

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "prepare",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","snowflake"],
 ["capturename","captureName"],
 ["account","account"],
 ["region","region"],
 ["warehouse","warehouse"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"],
 ["ldtxsize","{0-9999999999}"],
 [“filter”,”filterID,filteringClause”],
 ["transformload","{0|1}"]

 76

]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli prepare process=apply id=applyID dbtype=snowflake \
capturename=captureName \
account=account region=region warehouse=warehouse \
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask ldtxsize={0-9999999999} \
filter=filterID,filteringClause transformload={0|1}

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the only possible value is snowflake
● capturename – The name of the Capture Process which is providing the data to

be used
● account – Snowflake Account name
● region – Snowflake Region name
● warehouse – Warehouse name
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – Level of debugging, possible values are 0-15
● ddlcreate – Used to define the Apply Process behavior when creating a table, if

a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists

 77

➢ recreate – drops the existing table and recreates it
● ddldrop – Used to define the Apply Process behavior when dropping a table, if a

table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

● ldtxsize – Determines the number of records to be inserted in one transaction
at the Initial Load stage. If the value is 0 (default) the table is loaded in a single
transaction.

● filter – The set of the parameters to determine objects’ filtering (see chapter
7.9.7 Objects Filtering for the details).

● transformload – Determines if the transformation rules must be applied to the
Initial Load. The possible values are:

➢ 0 – do not use transformation rules for the Initial Load (default)
➢ 1 – use transformation rules for the Initial Load.

How to find “Snowflake Account” and “Snowflake Region” is described in chapter 7.1.7
Prepare Snowflake as Target Database.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.9.7 Objects Filtering

Filters are used by Apply Process to filter out data while processing DML operations.
The filter should be configured for either single table or group of the tables and at least
for one DML operation. The filtering statement might also be provided, which is to be
used to construct “where” condition of the DML statement. If the filtering statement is
not provided, then the Apply Process will ignore this DML operation.

The syntax used is:

filter=id,rule=(table_mask;dml_operations;”filter_statement”)

 78

where:
● id – The id, which is unique to each Filter has the purpose of determining the

order in which the Filter is used by the Apply Process.
● table_mask – It is used to specify list of the tables. The format is

schema_name.table_name and the % symbol may be used in order to match any
number of characters.

● dml_operations – List of the DML operations separated by comma. The valid
DML operations are: INSERT, UPDATE, DELETE.

● filter_statement – The statement to be used to build the “where” clause of
DML operation.

The following examples show various ways of defining the Filter parameters:

❏ Skip any “delete” operations for “logs” table in “scott” schema:

filter=1,rule=(scott.logs;DELETE;””)

❏ Skip any “delete” operations for the dbo.orders table if processed column equal
to “1”:

filter=2,rule=(dbo.orders;DELETE;”processed=1”)

❏ Skip any DML operations for the dbo.emp table if the info column has

“do_not_replicate” value:

filter=3,rule=(dbo.emp;INSERT,UPDATE,DELETE;”info=’do_not_replicate’”)

❏ Do not insert record into the dbo.acct table if the record with the same id already

exists:

filter=4,rule=(dbo.acct;INSERT;”id in (select id from dbo.acct)”)

7.10 Alter Apply Process
The “alter” Apply command is used to change the Apply Process parameters. The id
parameter can not be changed. The Apply Process has to exist otherwise the command
will fail. The capturename parameter can be altered only in the case that it has not been
used earlier.

Note – You can alter the Apply Process even if it is running, however these changes
will only be implemented after this Apply Process has been stopped and rerun.

7.10.1 Alter Apply Process for MS SQL Server Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

 79

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","mssql"],
 ["capturename","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["repuser","0|1"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=apply id=applyID dbtype=mssql \
capturename=captureName \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} \
debuglevel={0-15} repuser={0|1} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the only possible value is mssql
● capturename – Name of the Capture Process which is providing the data to be

used

 80

● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – Level of debugging, possible values are 0-15 (default value is 0)
● repuser – Determines if the Apply Process must represent itself as MS SQL

Server replication process. The possible values are:
➢ 0 – do not represent itself as SQL Server replication process (default value)
➢ 1 – to represent itself as SQL Server replication process

● ddlcreate – Used to define the Apply Process behavior when creating a table, if
a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has following option:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

 81

7.10.2 Alter Apply Process for Oracle Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","oracle"],
 ["capturename","captureName"],
 ["connectiontype","tns|ezconnect"],
 ["tnsname","tns_alias"],
 ["server","host_name"],
 ["port","port_number"],
 ["servicename","service_or_SID"],
 ["user","username"],
 ["password","password"],
 ["autostart","{0|1}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["debuglevel", "{0-15}"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"],
 ["ldtxsize","{0-9999999999}"],
 ["batchmode","{0|1}"],
 ["filter","filterID,filteringClause"],
 ["transformload","{0|1}"]
]
}

Server response:

● HTTP Status – status of the command, the possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=apply id=applyID dbtype=oracle \
capturename=captureName \
connectiontype=tns|ezconnect tnsname=tns_alias \
servicename=service_or_SID \
server=databaseHost port=databasePort \
user=username password=password \
autostart={0|1} \
ddlcreate=objectMask:options ddldrop=objectMask:options \

 82

ddlprocessing=native|dictionary \
debuglevel={0-15} skipapply=skipapplyMask \
ldtxsize={0-9999999999} batchmode={0|1} \
filter=filterID,filteringClause transformload={0|1}

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the only possible value is oracle
● connectiontype – Specifies the Oracle connection method, possible values are:

➢ tns – Local Naming Method to be used
➢ ezconnect – EZCONNECT to be used

● tnsname – Name of the TNS alias, valid only if connectiontype=tns
● server – Host name or IP address of the database server, valid only if

connectiontype=ezconnect
● port – Database port number, valid only if connectiontype=ezconnect
● servicename – Database service name or SID, valid only if

connectiontype=ezconnect
● capturename – Name of the Capture Process which is providing the data to be

used
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically or not.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● ddlcreate – Used to define the Apply Process behavior when creating a table, if
a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has following option:

➢ skip – do not run DDL drop command if the table doesn’t exist
● debuglevel – Level of debugging, possible values are 0-15 (default value is 0)
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

 83

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

● ldtxsize – Determines the number of records to be inserted in one transaction
at the Initial Load stage. If the value is 0 (default) the table is loaded in a single
transaction.

● batchmode – This parameter is to specify transaction processing method. If the
parameter is enabled the Apply Process combines and processes set of
transactions in a single transaction. The possible values are:

➢ 0 – do not apply transactions in batch mode (default)
➢ 1 – apply transactions in batch mode

● filter – The set of the parameters to determine objects’ filtering (see chapter
7.9.7 Objects Filtering for the details).

● transformload – Determines if the transformation rules must be applied to the
Initial Load. The possible values are:

➢ 0 – do not use transformation rules for the Initial Load (default)
➢ 1 – use transformation rules for the Initial Load.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.10.3 Alter Apply Process for PostgreSQL and Aurora PostgreSQL Databases

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","postgresql"],
 ["capturename","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],

 84

 ["debuglevel","{0-15}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=apply id=applyID dbtype=postgresql \
capturename=captureName \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} \
debuglevel={0-15} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the only possible value is postgresql
● capturename – Name of the Capture Process which is providing the data to be

used
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – Level of debugging, possible values are 0-15 (default value is 0)
● ddlcreate – Used to define the Apply Process behavior when creating a table, if

a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each

 85

table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.10.4 Alter Apply Process for MySQL and Aurora MySQL Databases

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","mysql"],
 ["capturename","captureName"],
 ["server","databaseHost"],
 ["port","databasePort"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],
 ["autostart","{0|1}"],

 86

 ["debuglevel","{0-15}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"]
]
}

Server response:

● HTTP Status – Status of the command, the possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=apply id=applyID \
dbtype=mysql capturename=captureName \
server=databaseHost port=databasePort \
user=username password=password \
dbname=databaseName autostart={0|1} \
debuglevel={0-15} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the possible value is mysql
● capturename – Name of the Capture Process which is providing the data to be

used
● server – Host name or IP address of the database server
● port – Database port
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

● debuglevel – Level of debugging, possible values are 0-15 (default value is 0)
● ddlcreate – Used to define the Apply Process behavior when creating a table, if

a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each

 87

table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

7.10.5 Alter Apply Process for Snowflake Database

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "alter",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["dbtype","snowflake"],
 ["capturename","captureName"],
 ["account","account"],
 ["region","region"],
 ["warehouse","warehouse"],
 ["user","username"],
 ["password","password"],
 ["dbname","databaseName"],

 88

 ["autostart","{0|1}"],
 ["debuglevel","{0-15}"],
 ["ddlcreate","objectMask:options"],
 ["ddldrop","objectMask:options"],
 ["ddlprocessing","native|dictionary"],
 ["skipapply","skipapplyMask"],
 ["ldtxsize","{0-9999999999}"],
 [“filter”,”filterID,filteringClause”],
 ["transformload","{0|1}"]
]
}

Server response:

● HTTP Status – Status of the command, the possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli alter process=apply id=applyID \
dbtype=snowflake capturename=captureName \
account=account region=region warehouse=warehouse \
user=username password=password \
dbname=databaseName autostart={0|1} debuglevel={0-15} \
ddlcreate=objectMask:options \
ddldrop=objectMask:options \
ddlprocessing=native|dictionary \
skipapply=skipapplyMask ldtxsize={0-9999999999} \
filter=filterID,filteringClause transformload={0|1}

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process identifier
● dbtype – Type of RDBMS, the possible value is snowflake
● capturename – Name of the Capture Process which is providing the data to be

used
● account – Snowflake Account name
● region – Snowflake Region name
● warehouse – Warehouse name
● dbname – Database name
● user – Database User name
● password – Database User password
● autostart – Determines if the Apply Process must be run automatically.

Possible values are:
➢ 0 – do not run the Apply Process automatically (default value)
➢ 1 – to run the Apply Process automatically

 89

● debuglevel – Level of debugging, possible values are 0-15 (default value is 0)
● ddlcreate – Used to define the Apply Process behavior when creating a table, if

a table with the same name is found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL create command if the table already exists
➢ recreate – drops the existing table and recreates it

● ddldrop – Used to define the Apply Process behavior when dropping a table, if a
table with the same name is not found. The table is specified in
schema_name.table_name format. In order to specify the list of the tables, each
table must be separated by comma. The % symbol may be used in order to match
any number of characters. It has the following options:

➢ skip – do not run DDL drop command if the table doesn’t exist
● ddlprocessing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢ native – to process DDL based on the user statement (default value)
➢ dictionary – to generate DDL based on the dictionary changes

● skipapply – Used to define the behavior of the Apply Process when inserting
data, which was originally produced by Apply Processes in the Source Database
as part of the “loop-back” control function, in that, this Apply Process will insert,
or ignore the data. The Apply Processes to be skipped are specified by ids
separated by comma. In order to specify all Processes the “all” value to be used.
In order to avoid skipping any Apply Processes the “none” value to be used. The
default value is “none”.

● ldtxsize – Determines the number of records to be inserted in one transaction
at the Initial Load stage. If the value is 0 (default) the table is loaded in a single
transaction.

● filter – The set of the parameters to determine objects’ filtering (see chapter
7.9.7 Objects Filtering for the details).

● transformload – Determines if the transformation rules must be applied to the
Initial Load. The possible values are:

➢ 0 – do not use transformation rules for the Initial Load (default)
➢ 1 – use transformation rules for the Initial Load.

How to find “Snowflake Account” and “Snowflake Region” is described in chapter 7.1.7
Prepare Snowflake as Target Database.

Note – "dictionary" value is commonly used in the case of Heterogeneous replication.
For Homogeneous type of replication it is recommended to use "native" method of DDL
processing.

 90

7.11 Show Apply Process
The “show” Apply Process command is used to show an Apply configuration. This
command will show the latest ”Set” of configured Processes, regardless of whether or
not the Apply Process has been “stopped and re-applied”, this will not necessarily be
the configuration of the currently running Apply Process.

Note – If the configuration has been changed when the Apply Process is running, the
“show” command will still display the currently configured Apply Process, and not the
“running” one.

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "show",
 "parameters": [
 ["process","apply"],
 ["id","applyID"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Failed|Completed}",
 "Message":"The command execution details",
 "parameters":[
 ["param1","value1"],
 ["param2","value2"],
 …
 ["paramN","valueN"],
]
}

The in the “parameters” section all enabled Process’s parameters along with their
values are provided.

CLI Syntax:

repcli show process=apply id=applyID

The input parameters are:
● process – The only possible value is apply

 91

● id – The Apply Process Identifier

Note – Only in the case that the command completes successfully will the response
contain all the “parameter” values and at the same time this information will be
displayed in Plain Text in the “Message” display.

7.12 Validate Apply Process
The “validate” Apply Process command is used to perform a set of background checks
to ensure that all the necessary parameters have been supplied to enable the
functionality of an Apply configuration on the Target Database. This command will also
provide the “last” successfully applied transaction’s LSN/SCN but only if the Apply
Process has previously been run or reset.

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "validate",
 "parameters": [
 ["process","apply"],
 ["id","applyID"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Valid|Invalid}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli validate process=apply id=applyID

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process Identifier

In case the Status is Invalid the Message will contain detailed information about the
validation error.

 92

7.13 Reset Apply Process
The “reset” command can only be used for an Apply Process – it is used where there is
a need to force the Apply Process to start from specific LSN/SCN or after some
LSN/SCN.

It is primarily used to “Set” or “Change” the “Startpoint” for an Apply Process.

REST API:

● Endpoint: https://repstance_url/reset/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "reset",
 "parameters": [
 ["process","apply"],
 ["id","applyID"],
 ["LSN","LSN"],
 ["skip","{0|1}"],
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Failed}",
 "Message":"The command execution details",
}

CLI Syntax:

repcli reset process=apply id=applyID LSN=LSN skip={0|1}

The input parameters are:
● process – The only possible value is apply
● id – The Apply Process Identifier
● LSN – The point at which we need to start reprocessing data
● skip – Determines if we need to jump over or not, a specific LSN:

➢ 0 – start at the provided LSN
➢ 1 –start after the provided LSN

 93

The following example demonstrates how to reset an Apply Process to start from the
first transaction found, after LSN = 0x000000450000007B0004:

repcli reset process=apply id=1 lsn=0x000000450000007B0004 skip=1

The following example demonstrates how to reset an Apply Process to start using the
transactions from the LSN = 0x000000450000007F0004:

repcli reset process=apply id=1 lsn=0x000000450000007F0004 skip=0

7.14 Remove Apply Process
The “remove” Apply Process command is used to remove the Process configuration
files and the checkpoint details, together with historical information. If the Target
Database is reachable the “remove” command will cleanup all the checkpoint
information on the Target Database.

The command can only be executed if the specified Apply Process is not running.

It is strongly recommended that you backup configuration files and last successfully
processed LSN before running this command (see chapter 9.4 Backup Repstance Files).

This command cannot be applied to a group of Apply Processes at the same time, it
must be used individually for each of the configured Apply Processes.

REST API:

● Endpoint: https://repstance_url/configure/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "remove",
 "parameters": [
 ["process","apply"],
 ["id","applyID"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Error|Warning}",
 "Message":"The command execution details"
}

 94

CLI Syntax:

repcli remove process=apply id=applyID

The input parameters are:
● process – The only possible value is apply
● id – The identifier of the Apply Process

The output parameters are:
● Status – Status of the command, possible values are:

➢ Error – command has failed to run
➢ Warning – process has failed to remove all the Apply Objects
➢ Completed – command has completed successfully

● Message – Details of the command execution

Following example demonstrates how to remove Apply Process having id=2:

repcli remove process=apply id=2

7.15 Control Repstance Processes
There are three commands that are used to control the Capture and Apply Processes.
They are :
● run
● stop
● status

Each of these commands can be used to control a single Process, a group of Processes or
all Processes. The default is to run “All” the Processes that are available to be run,
stopped or get the status of, if no additional “Parameters” are specified.

The syntax used for these commands is:

repcli run|stop|status [process=(capture|apply) [id=processID]]

Here are some examples of using run command.

This command will “run” everything (all existing Capture and Apply Processes):

repcli run

This command will “run” all Capture Processes:

repcli run process=capture

This command will “run” a single specified Capture Process:

repcli run process=capture id=1

The command format is identical in use for both the “stop” and “status” commands.

 95

7.15.1 Run any Capture or Apply Processes

This command is used to “Run” either a single Capture or Apply Process or a group of
either Capture, or Apply Processes or all configured Processes. The default is to run all
Processes that are available to be run, if no additional “Parameters” are specified.

As part of the “run” command, Repstance carries out background checks to ensure that
Source and/or Target Databases are properly configured with the necessary
functionality to enable the Capture and/or Apply Processes to run. In the event that
either of the Databases are not properly configured, it will display an error message
listing the inconsistencies.

At the “first time” run of the Capture Process for MS SQL database it creates CDC
tables needed for the replication and start extracting the changes from the first available
LSN generated in the CDC tables.

For the Oracle database at the “first time” run the “current database SCN” is used as the
start point of the replication.

Note – If there are any active transactions were running at the “current database SCN”,
and these transactions are committed after this SCN, the ALL changes generated by
these transactions are included into the replication, so the tables will be in consistent
state and no data is missed.

If the previously defined Objects (see chapter 7.4.4 Capture Objects Specification) are
changed or the Transformation Rules (see chapter 7.4.7 Transformation Rules and
Triggering Order) are altered, at this point all the DDL and DML changes will be re-
implemented using the new criteria.

If any Objects are no longer configured for Capture Process the “run” command will
“Turn Off” CDC on these Objects and they will no longer be written to the Trail Files –
the reverse is true i.e. if new Objects are specified then the “run” command will enable
CDC for them and they will now be written to the Trial Files.

If this is the “First time” an Apply Process has been run, it is only at this point that data
from the specified Capture Process will be written to the Target Database using the first
available LSN in the Trail File generated by this Capture Process.

The Apply Process can be configured to use a specific LSN from a Capture Process as a
start point, i.e it can be configured to use any available LSN from a Trail File, but this is
done by using the “reset” command (see chapter 7.13 Reset Apply Process).

If the specified Capture Process either is not configured or has never been run, the
Apply Process will fail.

REST API:

● Endpoint: https://repstance_url/control/process

 96

● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "run",
 "parameters": [
 ["process","apply|capture"],
 ["id","processID"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Error}",
 "Message":"The command execution details"
}

CLI Syntax:

repcli run process=apply|capture id=processID

The input parameters are:
● process – Constant value apply for Apply Processes or constant value capture

for Capture Processes
● id – Identifier of the Process

The output parameters are:
● Status – Status of the command, possible values are:

➢ Error – the command has failed to run
➢ Completed – the command has completed successfully

● Message – Details of command execution

7.15.2 Stop any Capture or Apply Processes

This command is used to stop either a single Capture or an Apply Process or a group of
either Capture, or Apply Processes or all configured Processes. The default is to stop
everything that is running, if no additional parameters are specified.

REST API:

● Endpoint: https://repstance_url/control/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

 97

● Body:
{
 "command": "stop",
 "parameters": [
 ["process","apply|capture"],
 ["id","processID"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
{
 "Status":"{Completed|Error}",
 "Message":"The command execution details",
}

CLI Syntax:

repcli stop process=apply|capture id=processID

The input parameters are:
● process – Constant value apply for Apply Processes or constant value capture

for Capture Processes
● id – Identifier of the Process

The output parameters are:
● Status – Status of the command, possible values are:

➢ Error – the command has failed to run
➢ Completed – the command has completed successfully

● Message – The details of command execution

7.15.3 Status of any Capture or Apply Processes

This command is used to show the status of either a single Capture or an Apply Process
or a group of either Capture, or Apply Processes or all configured Processes. The
default is to show the status of every Process that is running, if no additional
parameters are specified.

REST API:

● Endpoint: https://repstance_url/control/process
● Method: POST
● Header:

➢ Content-Type: application/json
➢ X-Token: token

● Body:
{
 "command": "status",

 98

 "parameters": [
 ["process","apply|capture"],
 ["id","processID"]
]
}

Server response:

● HTTP Status – Status of the command, possible codes are:

➢ 200 – if no error occurs
➢ 422 – if error occurs

● Body:
 [

{
 "Process":"capture|apply",
 "ID":processID,
 "Parameters":{

"Name|CaptureName":"captureName",
"Server":"databaseHost",
"Port":"databasePort",
"DBname":"databaseName"},

 "Command":"INITIALISED|RUN|STOP|RESET",
 "CommandStatus":"Completed|In Process|Failed",
 "StatusDetails":"Waiting for the Next Command|

 Processing the Transactions|
 Waiting for Transactions",

 "CommandStartTime":"Time_in_UTC",
 "LastActivityTime":"Time_in_UTC",
 "StartLSN":"LSN",
 "StartLSNTime":"Time_in_UTC",
 "CheckpointLSN":"LSN",
 "CheckpointLSNTime":"Time_in_UTC",
 "LastDBLSN":"LSN",
 "LastDBLSNTime":"Time_in_UTC",
 "WAITING":"time_in_nanoseconds",
 "PROCESSING":"time_in_nanoseconds",
 "LOADING":"time_in_nanoseconds",
 "Message":"The command execution details",
 "CNTD":"Number_of_deletes",
 "CNTI":"Number_of_inserts",
 "CNTU":"Number_of_updates",
 "CNTDDL":"Number_of_ddls",
 "CNTLOBJ":"Number_of_loaded_objects",
 "CNTLOBJREC":"Number_of_loaded_records",
 "CNTTX":"Number_of_transactions"
},

 {
 Next_Process_description
 }, ...
]

CLI Syntax:

repcli status process=apply|capture id=processID

The input parameters are:

 99

● process – The apply value for Apply Processes or the capture value for
Capture Processes

● id – The identifier of the Process

The output parameters are:
● Process – Name of the configured Process, possible values are:

➢ capture
➢ apply

● ID – The identifier of the Process
● Parameters – The list of the currently configured parameters:

➢ Name – name of a Capture Process (only for Capture Processes)
➢ CaptureName – name of Capture Process being used by the Apply Process

(only for Apply Processes)
➢ Server – Host name or IP address of the database server
➢ Port – Database port
➢ DBname – Database name

● Command – The last executed command on the listed Process, possible values are:
➢ INITIALISED – means that the Process exists but currently has no

command executed
➢ RUN – means that the Process is running
➢ STOP – means that the Process is stopping
➢ RESET – means that the Apply Process is resetting to the specified LSN

● CommandStatus – Status of the command, possible values are:
➢ Waiting for the Next Command
➢ Processing the Transactions
➢ Waiting for Transactions
➢ Loading the Data

● CommandStartTime – Time in UTC format when the command was initialized
(the parameter is available only in JSON response)

● LastActivityTime – Time in UTC format when the Process activity changed
(the parameter is available only in JSON response)

● StartLSN – The first LSN (in hexadecimal format) when a transaction was
processed (in repcli the parameter is displayed in the “Total since” section)

● StartLSNTime – Time of the transaction in UTC format the Process has started
with (in repcli the parameter is displayed in the “Total since” section)

● CheckpointLSN – The LSN (in hexadecimal format) of the last transaction that
has been successfully processed (in repcli the parameter is displayed in the “Last
Captured/Applied DB Change” section)

● CheckpointLSNTime – Time in UTC format of the last transaction that has been
successfully processed (in repcli the parameter is displayed in the “Last
Captured/Applied DB Change” section)

● LastDBLSN – The last known transaction LSN (in hexadecimal format) in the
Source Database. The parameter is provided by Capture Process and valid only
in the case the Capture Process is running (in repcli the parameter is displayed in
the “Last Sourced DB Change” section)

 100

● LastDBLSNTime – Time in UTC format of the last known transaction LSN in the
Source Database. The parameter is provided by Capture Process and valid only
in the case the Capture Process is running (in repcli the parameter is displayed in
the “Last Sourced DB Change” section)

● WAITING – Number of nanoseconds that the Process has been waiting for data to
process (in repcli the parameter is displayed in the “Waiting for Transactions”
section in HH:MM:SS.FFF format)

● PROCESSING – Number of nanoseconds that the Process has been processing the
data (in repcli the parameter is displayed in the “Processing the Transactions”
section in HH:MM:SS.FFF format)

● LOADING – Number of nanoseconds that the Process has been loading the data (in
repcli the parameter is displayed in the “Loading the Data” section in
HH:MM:SS.FFF format)

● Message – Details of the command execution
● CNTD – Number of Delete Operations currently performed by the Process (in

repcli the parameter is displayed in the “Transactions” section on “Delete”
position)

● CNTI – Number of Insert Operations currently performed by the Process (in
repcli the parameter is displayed in the “Transactions” section on “Insert”
position)

● CNTU – Number of Update Operations currently performed by the Process (in
repcli the parameter is displayed in the “Transactions” section on “Update”
position)

● CNTDDL – Number of DDL statements currently processed by the Process (in
repcli the parameter is displayed in the “Transactions” section on “DDL”
position)

● CNTLOBJ – Number of Objects currently processed by Initial Loading (in repcli
the parameter is displayed in the “Loaded Objects” section)

● CNTLOBJREC – Number of records currently processed by Initial Loading (in
repcli the parameter is displayed in the “Loaded Objects” section on “Rows”
position)

● CNTTX – Number of transactions currently processed by the Process (in repcli the
parameter is displayed in the “Transactions” section)

The Average Speed parameter is average number of records processed per second
(calculated value).

The Lag parameter is the latency (delay) between the last record processed and the
timestamp of the last transaction in Source Database (calculated value). The Lag is valid
only in the case that the corresponding Capture Process is running. In repcli it is
displayed in HH:MM:SS.FFF format.

The following example shows statuses of all existing Processes:

[http://localhost:8796/] repcli>status

Capture Process 1, Name: repv1, DB: mcdb, Server: source.repstance.com
 RUN (In Process), Waiting for Transactions
 Last Source DB Change : 2019/03/10 21:47:00.610 UTC (0x000000E300001A750004)
 Last Captured DB Change : 2019/03/10 21:47:00.610 UTC (0x000000E300001A750004)

 101

 Total since 2019/03/10 21:43:00.367 UTC (0x000000D400000A850004):
 Processing the Transactions : 00:00:02.214
 Waiting for Transactions : 00:04:00.565
 Average Speed (ops) : 45168.973
 Transactions : 12 (DDL: 2, Delete: 4, Insert: 100016, Update: 0)

Apply Process 1, Transactions Provider (Capture): repv1, DB: mcdb, Server:
target.repstance.com
 RUN (In Process), Waiting for Transactions
 Last Source DB Change : 2019/03/10 21:47:00.610 UTC (0x000000E300001A750004)
 Last Applied DB Change : 2019/03/10 21:47:00.610 UTC (0x000000E300001A750004)
 Lag : 00:00:00.000
 Total since 2019/03/10 21:44:00.696 UTC (0x00000000000000000001):
 Processing the Transactions : 00:00:09.230
 Waiting for Transactions : 00:03:23.067
 Average Speed (ops) : 10836.252
 Transactions : 12 (DDL: 2, Delete: 4, Insert: 100016, Update: 0)

The following example shows status of Capture Processes:

[http://localhost:8796/] repcli>status process=capture

Capture Process 1, Name: cap1, DB: prod1, Server: source.repstance.com
 RUN (In Process), Waiting for Transactions
 Last Source DB Change : 2019/03/05 19:58:00.283 UTC (0x0000006F00004C900004)
 Last Captured DB Change : 2019/03/05 19:58:31.103 UTC (0x0000006F00005C340003)
 Total since 2019/03/05 19:58:00.283 UTC (0x0000006F00004C900004):
 Processing the Transactions : 00:00:00.588
 Waiting for Transactions : 00:00:01.165
 Loading the Data : 00:00:04.926
 Average Load Speed (ops) : 190907.891
 Average Speed (ops) : 0.000
 Transactions : 0 (DDL: 0, Delete: 0, Insert: 0, Update: 0)
 Loaded Objects : 2 (Rows: 940416)

 102

8. WORK WITH REPSTANCE USING WEB UI

In both AWS and Azure environments the Repstance virtual machine is delivered with
preconfigured Web UI Application, which is used to fully maintain and monitor
Repstance Server using web browser.

This method can be used instead or along with the CLI or REST API commands. Any
configuration changes that were performed via Web UI will be also available through
the CLI or REST API commands and vice versa.

8.1 Connecting to Repstance Web UI
To connect to the Web UI using the HTTPS protocol open the following address in web
browser:

https://<Repstance DNS>:3000/

where <Repstance DNS> is the “Public DNS” of Repstance Instance. If “Public DNS” is
not configured for the instance, the “Private IP” address should be used instead. The
default port number is 3000.

The username is “repstance”. The default password in the AWS environment is the
Instance ID and the VM Id in the Azure environment.

The following example shows how to find Web UI connectivity parameters in the AWS
environment.

So, the link to the Web UI and the default credentials for this example will be the
following:

 103

The “Repstance DNS” and the port number can be changed by editing “proxy_url” and
“proxy_port” entries in the /opt/repstance/ui/config.json file.

The password is stored in the /opt/repstance/conf/repstance.conf file (“token”
entry) and can be changed by editing the “token” entry.

8.2 How to work in Web UI
Repstance Web UI is an alternative way to configure, perform and maintain all the
commands and processes described in chapter 7. Commands to be used.

All the functionality is allocated onto three tabs, which are:

- Database Configuration
- Process Configuration
- Wizard

The start page of Repstance Web UI is “Process Configuration”. It displays general
information about all existing Repstance Processes, created by any available way –
using Web UI, repcli or REST API (see chapter 8.2.2 Process Configuration for more
information).

If there are no any existing Repstance Processes yet, then Wizard mode will be
suggested (see chapter 8.2.3 Wizard mode for the details).

8.2.1 Database Configuration

The Database Configuration form is to configure both Source and Target Databases,
which are used by Repstance’s Processes. As a part of database configuration, the
following commands can be executed:

 104

• Prepare database. This command is used to “prepare” either Source or Target
database, by meaning that some replication functionality needs to be enabled
and the Repstance’s objects to support the replication need to be installed.
Note: Both Source and Target Databases must be configured before running any
replication process

• Remove database. This command is used to remove any replication functionality
and Repstance’s objects, which are installed by running the “prepare” command.

• Validate database. The command is used to check if the database has all
necessary Repstance’s objects and can be safety used by Repstance’s Processes.

More details on these commands are described in chapter 5. How to use Repstance.

The “Database Configuration” is located on the top panel and opens the “Database
Maintenance” form.

The form contains the following group of items:

1. Identify if the Database is “Source” or “Target”, or both.
2. Select type of the database engine. The following database types can be selected

for a Source Database:
• Oracle
• MS SQL Server

The following database types can be selected for a Target Database:
• Oracle
• MS SQL Server
• MySQL
• PostgreSQL
• Redshift
• Snowflake

Note: MySQL, PostgreSQL, Redshift and Snowflake are supported in Repstance
Advanced Edition only.

 105

3. The database parameters. Depending on selected database type the different set
of inputs to be displayed.

4. This link is used to generate JSON for “prepare”, “validate” and “remove”
commands, which is valid JSON for appropriate REST API command (see
chapter 3.3 REST API for more details).

5. The buttons to execute “prepare”, “validate” or “remove” commands. Once the
command is executed the status is provided.

In order to configure Oracle Database select “Oracle” under “Database Type” and
enable “Source” or “Target” or both flags under “Database”:

• Connection Type – There are two possible connection types – EZCONNECT and
TNS. Depending on which one is chosen, there will be a different set of possible
parameters.

• Createlogdirs – The parameter determines if the ONLINELOG_DIR and
ARCHIVELOG_DIR Oracle directories should be created.
Note: The ONLINELOG_DIR and ARCHIVELOG_DIR directories are used if the
Capture Process is configured to extract changes in the “DirectLog” mode only
(see chapter 7.4.3 Overview of Data Capturing Methods for Oracle Database for
the details).

If EZCONNECT connection type is selected the following connectivity parameters should
be provided:

• Server – Host name or IP address of the database server
• Port – Database port number
• DB – Name of either container or pluggable database. Valid only for Source

Database and for any Oracle versions 12c-19c but excluding RDS instances.
• Service Name – Database service name or SID
• Tablespace – Name of the tablespace that the Repstance’s objects are to be

installed in. The default is the USERS tablespace if no alternative has been
specified.

• Username – Database User name
• Password – Database User password

If TNS connection type is selected the following connectivity parameters should be
provided:

 106

• DB – Name of either container or pluggable database. Valid only for Source

Database and for any Oracle versions 12c-19c but excluding RDS instances.
• TNS Name – Name of the TNS alias
• Tablespace – Name of the tablespace that the Repstance’s objects are to be

installed in. The default is the USERS tablespace if no alternative has been
specified.

• Username – Database User name
• Password – Database User password

Note: In order to use TNS connection type the “TNS Service Name” must be configured
in the Repstance machine (see the details how the TNS method configuration
https://docs.oracle.com/en/database/oracle/oracle-database/19/ntcli/specifying-
connection-by-configuring-tnsnames.ora-file.html#GUID-D039649B-3A41-4BC8-BC29-
EB1F9B0B6792).

8.2.1.2 MS SQL Server Database Configuration

In order to configure MS SQL Server Database select “MS SQL Server” under “Database
Type” and enable “Source” or “Target” or both flags under “Database”:

The following parameters should be provided:

• Server – Host name or IP address of the database server
• Port – Database port number
• DB – Database name to be connected to
• Username – Database User name
• Password – Database User password
• Housekeeping – This parameter determines how the CDC data will be cleaned

up. The possible values are:
Ø 0 – data will be cleaned up by an SQL Server job only,

 107

Ø 1 – install Repstance job to clean up data only after extraction and keep
SQL Server cleanup job, which is a time based CDC setting,

Ø 2 – install Repstance job and remove SQL Server cleanup job, data will be
cleaned up only by the Repstance job.

8.2.1.3 MySQL Database Configuration

In order to configure MySQL Database select “MySQL” under “Database Type”. The
database can be configured as Target Database only.

Note – MySQL database is supported in the Repstance Advanced Edition only.

The following parameters should be provided:

• Server – Host name or IP address of the database server
• Port – Database port number
• DB – Database name to be connected to
• Username – Database User name
• Password – Database User password

8.2.1.4 PostgreSQL Database Configuration

In order to configure PostgreSQL Database select “PostgreSQL” under “Database
Type”. The database can be configured as Target Database only.

Note – PostgreSQL database is supported in the Repstance Advanced Edition only.

 108

The following parameters should be provided:

• Server – Host name or IP address of the database server
• Port – Database port number
• DB – Database name to be connected to
• Username – Database User name
• Password – Database User password

8.2.1.5 Redshift Database Configuration

In order to configure Redshift Database select “Redshift” under “Database Type”. The
database can be configured as Target Database only.

Note – Redshift Database is supported in the Repstance Advanced Edition only.

The following specific parameters should be provided:

• Server – Host name or IP address of the database server
• Port – Database port number
• DB – Database name to be connected to
• Username – Database User name
• Password – Database User password

 109

8.2.1.6 Snowflake Database Configuration

In order to configure Snowflake Database select “Snowflake” under “Database Type”.
The database can be configured as Target Database only.

Note – Snowflake Database is supported in the Repstance Advanced Edition only.

The following specific parameters are to be provided:

• Account – Account name
• Warehouse – Warehouse name
• Region – Region name
• DB – Database name
• Username – Database User name
• Password – Database User password

How to find “Snowflake Account” and “Snowflake Region” is described in chapter 7.1.7
Prepare Snowflake as Target Database.

8.2.2 Process Configuration

The “Process Configuration” tab is used to create, manage and control Repstance
replication Processes. It displays details on the Processes created by any available
method – using repcli, REST API or via Web UI and the items to maintain the
Processes, which are:

• “Run All” – Start all Processes
• “Stop All” – Stop all Processes
• “Run All Captures” – Run All Capture Processes
• “Stop All Captures” – Stop All Capture Processes
• “+ Add Process” on the Capture Tab – Added Capture Process
• “Run All Applies” – Run All Apply Processes
• “Stop All Applies” – Stop All Apply Processes
• “+ Add Process” on the Apply Tab – Added Apply Process

 110

Each existing Process has individual control items which are to run, stop, modify,
validate and remove the Process.

Execution details of these commands are described in chapter 7.15 Control Repstance
Processes.

8.2.2.1 Create Capture Process

In order to create new Capture Process click “Add Process” button on “Capture
Processes” tab:

The “Capture Process Configuration” form is opened:

On the top the following parameters should be provided:

• Debug level – Level of debugging of Capture Process.
• Autostart – Determines if the Process must be run automatically.

Database Settings Tab

 111

Under “Database Settings” select the Database Type. Depending on which one is
chosen, there will be a different set of possible parameters.

Database Settings for Oracle Database

For the Oracle database type the following parameters should be provided:

• Connection Type – There are two possible connection types: EZCONNECT and
TNS. Depending on which one is chosen, there will be a different set of possible
parameters.

• ID – The Capture Process id.
• Name – Name of the Capture Process.
• Server – Host name or IP address of the database server.
• Port – Database port.
• DB – Name of either container or pluggable database. Valid only for Source

Database and for any Oracle versions 12c-19c but excluding RDS instances.
• Service Name – Database service name or SID.
• Tablespace – Name of the tablespace that the Repstance’s objects are to be

installed in. The default is the USERS tablespace if no alternative has been
specified.

• Username – Database User name.
• Password – Database User password.
• Capture Source – Used to define Data Capturing Method (see chapter 7.4.3

Overview of Data Capturing Methods for Oracle Database). The possible values
are:

Ø LogMiner – use LogMiner method to capture the data (default value),
Ø RedoMiner – use Direct Log Mining method to capture the data,
Ø ASMMiner – use Direct Log Mining for Redo Logs located on the ASM

device.

If the RedoMiner or ASMMiner is selected the addition parameter is to be provided:

 112

• Mine Archivelogs Only parameter determines if the Process must process

Archived Redo Logs only.

If the ASMMiner is selected the ASM credentials parameters must be provided:

• ASM User – ASM User name
• ASM Password – ASM User password
• ASM Service Name – ASM service name or SID

Database Settings for MS SQL Server Database

For MS SQL Server database the following connection parameters should be provided:

• ID – The Capture Process id
• Name – Name of the Capture Process
• Server – Host name or IP address of the database server
• Port – Database port
• DB – Name of the database
• Username – Database User name
• Password – Database User password

Replication Objects

Under “Replication Objects” tab the details of the tables to be included in the replication
should be provided:

 113

• DML Include – Mask of the DML objects to be captured.
• DML Exclude –Mask of the DML objects to be skipped by the Capture Process.
• DDL Include – Mask of the DDL objects to be captured.
• DDL Exclude – Mask of the DDL objects to be skipped by the Capture Process.
• Load Include – Mask of the objects to be included into the Initial Load along

with the load option. The following load methods are currently supported:
o A – preserve the data (default value),
o T – use truncate statement to clean up the data,
o D – use delete statement to clean up the data,
o C – create table if it doesn’t exist,
o R – recreate table if it already exists.

• DDL Exclude – Mask of the objects to be skipped during Initial Load.
• Object Mapping and Possible Data Transformation Rule – This section is

to provide the transformation rules (see chapter 7.4.6 Objects Mapping and
Possible Transforms for the details).

Advanced Settings

Under “Advanced Settings” tab the additional Capture parameters can be provided:

 114

Clicking “Preview” button displays the report of the tables to be replicated and loaded
along with the details on the tables’ mapping and data transformations, so the Capture
Process configuration can be validated before to create it:

Clicking “Add Process” button creates the Capture Process and exits the form.

8.2.2.2 Create Apply Process

In order to create new “Apply Process” click “Add Process” button under “Apply
Processes” tab:

The “Apply Process Configuration” form is opened:

 115

Under “Database Settings” the following parameters should be provided:

• Debug level – Level of Apply Process debugging.
• Autostart – Determines if the Apply Process must be run automatically.
• Repuser – Determines if the Apply Process must represent itself as SQL Server

replication process (valid for MS SQL Server database only).
• ID – The Apply Process id.
• Capture Process name – Name of the Capture Process which is providing the

data to be used.
• Server, Port, DB, Username and Password are to provide DB connectivity

details and might be different depending on selected database type.
• DDL Processing – Determines if DDL must be processed based on the user

statement or generated based on the dictionary changes. The possible values are:
➢native – to process DDL based on the user statement (default value),
➢dictionary – to generate DDL based on the dictionary changes.

• Batchmode – This parameter is to specify transaction processing method. If the
parameter is enabled the Apply Process combines and processes set of
transactions in a single transaction.

• Initial Commit Rate – Determines the number of records to be inserted in one
transaction at the Initial Load stage. If the value is 0 (default) the table is loaded
in a single transaction.

• Data filter – The set of the parameters to determine objects’ filtering (see
chapter 7.9.7 Objects Filtering for the details).

8.2.2.3 Modify, Delete and Validate Processes

 116

In order to modify, validate or delete existing Capture or Apply Process click on the
“…” button and select the action:

Clicking “Edit” button opens the same form, which is used to create the Process, so the
Process parameters can be modified there. “Edit” is the analog of “alter” command (see
chapters 7.5 Alter Capture Process and 7.10 Alter Apply Process for details).

“Delete” is used to remove the Process (see chapters 6. HOW TO REMOVE
REPSTANCE, 7.8 Remove Capture Process and 7.14 Remove Apply Process for more
details).

“Validate” is used to verify if the process has been configured properly (see chapters 7.7
Validate Capture Process and 7.12 Validate Apply Process for the details).

8.2.2.4 Processes Monitoring and Maintenance

The dashboard displays general information about the Processes such as process
state, name of the Process and connectivity details:

To view the detailed information about the Process, click “Show more”:

 117

8.2.3 Wizard Mode

The Wizard Mode passes user through all the necessary steps to configure data
replication between two databases. It makes the configuration process much easy and
fast to implement. These steps are:

• Prepare Source Database. This step is to validate if the Source Database meets
the requirements to run the Capture Process and if it doesn't to configure the
Database.

• Prepare Capture Process. This step is to create the Capture Process and define
list of the tables to be migrated and replicated along with the transformation
rules.

• Prepare Target Database. This step is to validate if the Target Database is ready
for the replication and if it is not to configure it.

• Prepare Apply Process. This step is to create the Apply Process and provide data
processing settings.

Wizard Mode is automatically run at the first login or by clicking “Wizard” tab:

At the first step Wizard Process verifies if the Source Database is ready for the
replication. It requires the Source Database details to be provided. The set of the details
depends on the selected database type.

 118

If the Source Database is not ready for replication, Wizard Process offers to prepare the
database (see chapter 8.2.1 Database Configuration for the details).

Once the Source Database has been successfully prepared, Wizard Process moves on the
next step, which is to prepare Capture Process.

Wizard Process populates the database connection settings from the previous form. The
settings can be changed if required.

It is necessary to provide name of the Capture Process (Name parameter) and the tables
to be included into the DML/DDL replication (DML Include, DML Exclude and DDL
Include, DDL Exclude parameters).

 119

If the Source Database is Oracle the Capturing method (Capture Source parameter)
should be provided (see chapter 8.2.2.1 Create Capture Process for the details).

On the next form select the tables, which require being loaded before the replication
along with the loading option (see chapter 7.4.5 Initial Load for the details):

The next form is used to configure Transformation Rules (see chapter 7.4.7
Transformation Rules and Triggering Order):

Press “Next” to view the report of the tables to be included into the replication along
with the transformation details:

Press “Back” if anything needs to be adjusted or “Next” to complete the Capture
Process configuration.

 120

On the next form click “Yes”, if Capture Process needs to start immediately.

The next step is to configure the Target Database. At this step Wizard Process validates
the Target Database and prepares it, if required (see chapter 8.2.1 Database
Configuration for details).

Depending on the database type the different set of the parameters should be provided
(see chapter 8.2.1 Database Configuration for the details).

Clicking “Next” validates Target Database and prepares it, if required, and moves to
the Apply Process configuration step:

Repstance fills out database settings and the Capture Process name from the previous
forms, which can be changed if desired.

It is recommended to use Dictionary value for the DDL processing parameter if the
Source and Target Databases are of different types, otherwise the Native value to be
preferable.

 121

The Initial Load Commit rate and the Data Filter parameters are described in
chapter 8.2.2.2 Create Apply Process.

On the next form click “Yes” to run the Process immediate.

The Wizard Mode is completed. As a result, the Capture and Apply Processes are
created and once they are run the replication from Source Database to Target Database
is started.

 122

9. REPSTANCE SERVER MAINTENANCE

As Repstance is a pre-configured Linux service it starts/stops together with the Server
and MUST be maintained using the Linux Service Command.

9.1 How to Stop Repstance Services
In order to stop the Repstance Server the “service repstance stop“ must be used:

service repstance stop
Stopping repstance: [OK]

9.2 How to Start Repstance Services
In order to start Repstance Server the “service repstance start“ must be used:

service repstance start
Starting repstance: [OK]

9.3 How to Check Repstance Service Status
In order to check Repstance Server status the “service repstance status“ must be used:

service repstance status
repstance (pid 3033) is running...

9.4 Backup Repstance Files
Regularly backup the Trail Files which are located in /opt/repstance/trail directory
along with the Configuration Files, which are located in /opt/repstance/conf and
Capture Checkpoint Files in /opt/repstance/captureckpt.* and lastly make sure
that you record the last applied checkpoint in a file of you choosing.

9.5 Housekeeping
Schedule regular jobs which are responsible for cleaning up “old” Trail and Log Files
which are found under these directories:

● /opt/repstance/trail – Trail Files
● /opt/repstance/log – Log Files

 123

GLOSSARY

Apply Checkpoint – The last LSN identifier for any data change applied.

Apply Process – Is the “Process” that inserts the extracted Data into the specified Target
Database.

Capture Checkpoint – The last LSN identifier for any data change captured.

Capture Process – Is the “Process” that extracts Data from the specified Source
Database.

DDL – Type of the Database Statement, that is used to provide or modify a Dictionary
Definition of a database object.

DML – Type of the Database Statement, that is used to modify Data in the tables.

LSN – Every record in Trail Files is identified by a Log Sequence Number generated by
SQL Server CDC functionality.

Process – This can be either Capture or Apply Process.

SCN – every record in the Trail Files is identified by a System Change Number
generated by Oracle.

Source Database – Is the Database from which you wish to extract/copy Data.

Target Database – Is the Database into which you wish to insert/copy Data.

Trail Files – These are the “Source Files” – containing Data extracted by a Capture
Process and used by an Apply Process.

Transformation Rules – these are the rules provided by user to change/control
transactions processing behavior.

